@ Documentation/RCU/Design/Expedited-Grace-Periods/Expedited-Grace-Periods.rst:41 @ sections. RCU-preempt Expedited Grace Periods =================================== -``CONFIG_PREEMPT=y`` kernels implement RCU-preempt. +``CONFIG_PREEMPTION=y`` kernels implement RCU-preempt. The overall flow of the handling of a given CPU by an RCU-preempt expedited grace period is shown in the following diagram: @ Documentation/RCU/Design/Expedited-Grace-Periods/Expedited-Grace-Periods.rst:115 @ things. RCU-sched Expedited Grace Periods --------------------------------- -``CONFIG_PREEMPT=n`` kernels implement RCU-sched. The overall flow of +``CONFIG_PREEMPTION=n`` kernels implement RCU-sched. The overall flow of the handling of a given CPU by an RCU-sched expedited grace period is shown in the following diagram: @ Documentation/RCU/Design/Requirements/Requirements.rst:81 @ RCU treats a nested set as one big RCU read-side critical section. Production-quality implementations of ``rcu_read_lock()`` and ``rcu_read_unlock()`` are extremely lightweight, and in fact have exactly zero overhead in Linux kernels built for production use with -``CONFIG_PREEMPT=n``. +``CONFIG_PREEMPTION=n``. This guarantee allows ordering to be enforced with extremely low overhead to readers, for example: @ Documentation/RCU/Design/Requirements/Requirements.rst:1185 @ and has become decreasingly so as memory sizes have expanded and memory costs have plummeted. However, as I learned from Matt Mackall's `bloatwatch <http://elinux.org/Linux_Tiny-FAQ>`__ efforts, memory footprint is critically important on single-CPU systems with -non-preemptible (``CONFIG_PREEMPT=n``) kernels, and thus `tiny +non-preemptible (``CONFIG_PREEMPTION=n``) kernels, and thus `tiny RCU <https://lkml.kernel.org/g/20090113221724.GA15307@linux.vnet.ibm.com>`__ was born. Josh Triplett has since taken over the small-memory banner with his `Linux kernel tinification <https://tiny.wiki.kernel.org/>`__ @ Documentation/RCU/Design/Requirements/Requirements.rst:1501 @ limitations. Implementations of RCU for which ``rcu_read_lock()`` and ``rcu_read_unlock()`` generate no code, such as Linux-kernel RCU when -``CONFIG_PREEMPT=n``, can be nested arbitrarily deeply. After all, there +``CONFIG_PREEMPTION=n``, can be nested arbitrarily deeply. After all, there is no overhead. Except that if all these instances of ``rcu_read_lock()`` and ``rcu_read_unlock()`` are visible to the compiler, compilation will eventually fail due to exhausting memory, @ Documentation/RCU/Design/Requirements/Requirements.rst:1774 @ implementation can be a no-op. However, once the scheduler has spawned its first kthread, this early boot trick fails for ``synchronize_rcu()`` (as well as for -``synchronize_rcu_expedited()``) in ``CONFIG_PREEMPT=y`` kernels. The +``synchronize_rcu_expedited()``) in ``CONFIG_PREEMPTION=y`` kernels. The reason is that an RCU read-side critical section might be preempted, which means that a subsequent ``synchronize_rcu()`` really does have to wait for something, as opposed to simply returning immediately. @ Documentation/RCU/Design/Requirements/Requirements.rst:2013 @ the following: 5 rcu_read_unlock(); 6 do_something_with(v, user_v); -If the compiler did make this transformation in a ``CONFIG_PREEMPT=n`` kernel +If the compiler did make this transformation in a ``CONFIG_PREEMPTION=n`` kernel build, and if ``get_user()`` did page fault, the result would be a quiescent state in the middle of an RCU read-side critical section. This misplaced quiescent state could result in line 4 being a use-after-free access, @ Documentation/RCU/Design/Requirements/Requirements.rst:2292 @ decides to throw at it. The Linux kernel is used for real-time workloads, especially in conjunction with the `-rt -patchset <https://rt.wiki.kernel.org/index.php/Main_Page>`__. The +patchset <https://wiki.linuxfoundation.org/realtime/>`__. The real-time-latency response requirements are such that the traditional approach of disabling preemption across RCU read-side critical sections -is inappropriate. Kernels built with ``CONFIG_PREEMPT=y`` therefore use +is inappropriate. Kernels built with ``CONFIG_PREEMPTION=y`` therefore use an RCU implementation that allows RCU read-side critical sections to be preempted. This requirement made its presence known after users made it clear that an earlier `real-time @ Documentation/RCU/Design/Requirements/Requirements.rst:2417 @ includes ``rcu_read_lock_bh()``, ``rcu_read_unlock_bh()``, ``call_rcu_bh()``, ``rcu_barrier_bh()``, and ``rcu_read_lock_bh_held()``. However, the update-side APIs are now simple wrappers for other RCU flavors, namely RCU-sched in -CONFIG_PREEMPT=n kernels and RCU-preempt otherwise. +CONFIG_PREEMPTION=n kernels and RCU-preempt otherwise. Sched Flavor (Historical) ~~~~~~~~~~~~~~~~~~~~~~~~~ @ Documentation/RCU/Design/Requirements/Requirements.rst:2435 @ not have this property, given that any point in the code outside of an RCU read-side critical section can be a quiescent state. Therefore, *RCU-sched* was created, which follows “classic” RCU in that an RCU-sched grace period waits for pre-existing interrupt and NMI -handlers. In kernels built with ``CONFIG_PREEMPT=n``, the RCU and +handlers. In kernels built with ``CONFIG_PREEMPTION=n``, the RCU and RCU-sched APIs have identical implementations, while kernels built with -``CONFIG_PREEMPT=y`` provide a separate implementation for each. +``CONFIG_PREEMPTION=y`` provide a separate implementation for each. -Note well that in ``CONFIG_PREEMPT=y`` kernels, +Note well that in ``CONFIG_PREEMPTION=y`` kernels, ``rcu_read_lock_sched()`` and ``rcu_read_unlock_sched()`` disable and re-enable preemption, respectively. This means that if there was a preemption attempt during the RCU-sched read-side critical section, @ Documentation/RCU/Design/Requirements/Requirements.rst:2602 @ userspace execution also delimit tasks-RCU read-side critical sections. The tasks-RCU API is quite compact, consisting only of ``call_rcu_tasks()``, ``synchronize_rcu_tasks()``, and -``rcu_barrier_tasks()``. In ``CONFIG_PREEMPT=n`` kernels, trampolines +``rcu_barrier_tasks()``. In ``CONFIG_PREEMPTION=n`` kernels, trampolines cannot be preempted, so these APIs map to ``call_rcu()``, ``synchronize_rcu()``, and ``rcu_barrier()``, respectively. In -``CONFIG_PREEMPT=y`` kernels, trampolines can be preempted, and these +``CONFIG_PREEMPTION=y`` kernels, trampolines can be preempted, and these three APIs are therefore implemented by separate functions that check for voluntary context switches. @ Documentation/RCU/checklist.rst:217 @ over a rather long period of time, but improvements are always welcome! the rest of the system. 7. As of v4.20, a given kernel implements only one RCU flavor, - which is RCU-sched for PREEMPT=n and RCU-preempt for PREEMPT=y. + which is RCU-sched for PREEMPTION=n and RCU-preempt for PREEMPTION=y. If the updater uses call_rcu() or synchronize_rcu(), then the corresponding readers my use rcu_read_lock() and rcu_read_unlock(), rcu_read_lock_bh() and rcu_read_unlock_bh(), @ Documentation/RCU/rcubarrier.rst:12 @ RCU (read-copy update) is a synchronization mechanism that can be thought of as a replacement for read-writer locking (among other things), but with very low-overhead readers that are immune to deadlock, priority inversion, and unbounded latency. RCU read-side critical sections are delimited -by rcu_read_lock() and rcu_read_unlock(), which, in non-CONFIG_PREEMPT +by rcu_read_lock() and rcu_read_unlock(), which, in non-CONFIG_PREEMPTION kernels, generate no code whatsoever. This means that RCU writers are unaware of the presence of concurrent @ Documentation/RCU/rcubarrier.rst:332 @ Answer: This cannot happen. The reason is that on_each_cpu() has its last to smp_call_function() and further to smp_call_function_on_cpu(), causing this latter to spin until the cross-CPU invocation of rcu_barrier_func() has completed. This by itself would prevent - a grace period from completing on non-CONFIG_PREEMPT kernels, + a grace period from completing on non-CONFIG_PREEMPTION kernels, since each CPU must undergo a context switch (or other quiescent state) before the grace period can complete. However, this is - of no use in CONFIG_PREEMPT kernels. + of no use in CONFIG_PREEMPTION kernels. Therefore, on_each_cpu() disables preemption across its call to smp_call_function() and also across the local call to @ Documentation/RCU/stallwarn.rst:28 @ warnings: - A CPU looping with bottom halves disabled. -- For !CONFIG_PREEMPT kernels, a CPU looping anywhere in the kernel +- For !CONFIG_PREEMPTION kernels, a CPU looping anywhere in the kernel without invoking schedule(). If the looping in the kernel is really expected and desirable behavior, you might need to add some calls to cond_resched(). @ Documentation/RCU/stallwarn.rst:47 @ warnings: result in the ``rcu_.*kthread starved for`` console-log message, which will include additional debugging information. -- A CPU-bound real-time task in a CONFIG_PREEMPT kernel, which might +- A CPU-bound real-time task in a CONFIG_PREEMPTION kernel, which might happen to preempt a low-priority task in the middle of an RCU read-side critical section. This is especially damaging if that low-priority task is not permitted to run on any other CPU, @ Documentation/RCU/whatisRCU.rst:687 @ Quick Quiz #1: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This section presents a "toy" RCU implementation that is based on "classic RCU". It is also short on performance (but only for updates) and -on features such as hotplug CPU and the ability to run in CONFIG_PREEMPT +on features such as hotplug CPU and the ability to run in CONFIG_PREEMPTION kernels. The definitions of rcu_dereference() and rcu_assign_pointer() are the same as those shown in the preceding section, so they are omitted. :: @ Documentation/RCU/whatisRCU.rst:743 @ Quick Quiz #2: Quick Quiz #3: If it is illegal to block in an RCU read-side critical section, what the heck do you do in - PREEMPT_RT, where normal spinlocks can block??? + CONFIG_PREEMPT_RT, where normal spinlocks can block??? :ref:`Answers to Quick Quiz <8_whatisRCU>` @ Documentation/RCU/whatisRCU.rst:1097 @ Quick Quiz #2: overhead is **negative**. Answer: - Imagine a single-CPU system with a non-CONFIG_PREEMPT + Imagine a single-CPU system with a non-CONFIG_PREEMPTION kernel where a routing table is used by process-context code, but can be updated by irq-context code (for example, by an "ICMP REDIRECT" packet). The usual way of handling @ Documentation/RCU/whatisRCU.rst:1124 @ Answer: Quick Quiz #3: If it is illegal to block in an RCU read-side critical section, what the heck do you do in - PREEMPT_RT, where normal spinlocks can block??? + CONFIG_PREEMPT_RT, where normal spinlocks can block??? Answer: - Just as PREEMPT_RT permits preemption of spinlock + Just as CONFIG_PREEMPT_RT permits preemption of spinlock critical sections, it permits preemption of RCU read-side critical sections. It also permits spinlocks blocking while in RCU read-side critical @ Documentation/admin-guide/kernel-parameters.txt:4100 @ value, meaning that RCU_SOFTIRQ is used by default. Specify rcutree.use_softirq=0 to use rcuc kthreads. + But note that CONFIG_PREEMPT_RT=y kernels disable + this kernel boot parameter, forcibly setting it + to zero. + rcutree.rcu_fanout_exact= [KNL] Disable autobalancing of the rcu_node combining tree. This is used by rcutorture, and might @ Documentation/admin-guide/kernel-parameters.txt:4482 @ only normal grace-period primitives. No effect on CONFIG_TINY_RCU kernels. + But note that CONFIG_PREEMPT_RT=y kernels enables + this kernel boot parameter, forcibly setting + it to the value one, that is, converting any + post-boot attempt at an expedited RCU grace + period to instead use normal non-expedited + grace-period processing. + rcupdate.rcu_task_ipi_delay= [KNL] Set time in jiffies during which RCU tasks will avoid sending IPIs, starting with the beginning @ Documentation/driver-api/io-mapping.rst:23 @ A mapping object is created during driver initialization using:: mappable, while 'size' indicates how large a mapping region to enable. Both are in bytes. -This _wc variant provides a mapping which may only be used -with the io_mapping_map_atomic_wc or io_mapping_map_wc. +This _wc variant provides a mapping which may only be used with +io_mapping_map_local_wc() or io_mapping_map_wc(). -With this mapping object, individual pages can be mapped either atomically -or not, depending on the necessary scheduling environment. Of course, atomic -maps are more efficient:: +With this mapping object, individual pages can be mapped either temporarily +or long term, depending on the requirements. Of course, temporary maps are +more efficient. - void *io_mapping_map_atomic_wc(struct io_mapping *mapping, - unsigned long offset) + void *io_mapping_map_local_wc(struct io_mapping *mapping, + unsigned long offset) -'offset' is the offset within the defined mapping region. -Accessing addresses beyond the region specified in the -creation function yields undefined results. Using an offset -which is not page aligned yields an undefined result. The -return value points to a single page in CPU address space. +'offset' is the offset within the defined mapping region. Accessing +addresses beyond the region specified in the creation function yields +undefined results. Using an offset which is not page aligned yields an +undefined result. The return value points to a single page in CPU address +space. -This _wc variant returns a write-combining map to the -page and may only be used with mappings created by -io_mapping_create_wc +This _wc variant returns a write-combining map to the page and may only be +used with mappings created by io_mapping_create_wc() -Note that the task may not sleep while holding this page -mapped. +Temporary mappings are only valid in the context of the caller. The mapping +is not guaranteed to be globaly visible. -:: +io_mapping_map_local_wc() has a side effect on X86 32bit as it disables +migration to make the mapping code work. No caller can rely on this side +effect. - void io_mapping_unmap_atomic(void *vaddr) +Nested mappings need to be undone in reverse order because the mapping +code uses a stack for keeping track of them:: -'vaddr' must be the value returned by the last -io_mapping_map_atomic_wc call. This unmaps the specified -page and allows the task to sleep once again. + addr1 = io_mapping_map_local_wc(map1, offset1); + addr2 = io_mapping_map_local_wc(map2, offset2); + ... + io_mapping_unmap_local(addr2); + io_mapping_unmap_local(addr1); -If you need to sleep while holding the lock, you can use the non-atomic -variant, although they may be significantly slower. +The mappings are released with:: -:: + void io_mapping_unmap_local(void *vaddr) + +'vaddr' must be the value returned by the last io_mapping_map_local_wc() +call. This unmaps the specified mapping and undoes eventual side effects of +the mapping function. + +If you need to sleep while holding a mapping, you can use the regular +variant, although this may be significantly slower:: void *io_mapping_map_wc(struct io_mapping *mapping, unsigned long offset) -This works like io_mapping_map_atomic_wc except it allows -the task to sleep while holding the page mapped. +This works like io_mapping_map_local_wc() except it has no side effects and +the pointer is globaly visible. - -:: +The mappings are released with:: void io_mapping_unmap(void *vaddr) -This works like io_mapping_unmap_atomic, except it is used -for pages mapped with io_mapping_map_wc. +Use for pages mapped with io_mapping_map_wc(). At driver close time, the io_mapping object must be freed:: void io_mapping_free(struct io_mapping *mapping) - -Current Implementation -====================== - -The initial implementation of these functions uses existing mapping -mechanisms and so provides only an abstraction layer and no new -functionality. - -On 64-bit processors, io_mapping_create_wc calls ioremap_wc for the whole -range, creating a permanent kernel-visible mapping to the resource. The -map_atomic and map functions add the requested offset to the base of the -virtual address returned by ioremap_wc. - -On 32-bit processors with HIGHMEM defined, io_mapping_map_atomic_wc uses -kmap_atomic_pfn to map the specified page in an atomic fashion; -kmap_atomic_pfn isn't really supposed to be used with device pages, but it -provides an efficient mapping for this usage. - -On 32-bit processors without HIGHMEM defined, io_mapping_map_atomic_wc and -io_mapping_map_wc both use ioremap_wc, a terribly inefficient function which -performs an IPI to inform all processors about the new mapping. This results -in a significant performance penalty. @ arch/Kconfig:40 @ config OPROFILE tristate "OProfile system profiling" depends on PROFILING depends on HAVE_OPROFILE + depends on !PREEMPT_RT select RING_BUFFER select RING_BUFFER_ALLOW_SWAP help @ arch/Kconfig:647 @ config HAVE_TIF_NOHZ config HAVE_VIRT_CPU_ACCOUNTING bool +config HAVE_VIRT_CPU_ACCOUNTING_IDLE + bool + help + Architecture has its own way to account idle CPU time and therefore + doesn't implement vtime_account_idle(). + config ARCH_HAS_SCALED_CPUTIME bool @ arch/Kconfig:667 @ config HAVE_VIRT_CPU_ACCOUNTING_GEN some 32-bit arches may require multiple accesses, so proper locking is needed to protect against concurrent accesses. - config HAVE_IRQ_TIME_ACCOUNTING bool help @ arch/alpha/include/asm/kmap_types.h:1 @ -/* SPDX-License-Identifier: GPL-2.0 */ -#ifndef _ASM_KMAP_TYPES_H -#define _ASM_KMAP_TYPES_H - -/* Dummy header just to define km_type. */ - -#ifdef CONFIG_DEBUG_HIGHMEM -#define __WITH_KM_FENCE -#endif - -#include <asm-generic/kmap_types.h> - -#undef __WITH_KM_FENCE - -#endif @ arch/alpha/include/asm/spinlock_types.h:5 @ #ifndef _ALPHA_SPINLOCK_TYPES_H #define _ALPHA_SPINLOCK_TYPES_H -#ifndef __LINUX_SPINLOCK_TYPES_H -# error "please don't include this file directly" -#endif - typedef struct { volatile unsigned int lock; } arch_spinlock_t; @ arch/arc/Kconfig:510 @ config LINUX_RAM_BASE config HIGHMEM bool "High Memory Support" select ARCH_DISCONTIGMEM_ENABLE + select KMAP_LOCAL help With ARC 2G:2G address split, only upper 2G is directly addressable by kernel. Enable this to potentially allow access to rest of 2G and PAE @ arch/arc/include/asm/highmem.h:12 @ #ifdef CONFIG_HIGHMEM #include <uapi/asm/page.h> -#include <asm/kmap_types.h> +#include <asm/kmap_size.h> + +#define FIXMAP_SIZE PGDIR_SIZE +#define PKMAP_SIZE PGDIR_SIZE /* start after vmalloc area */ #define FIXMAP_BASE (PAGE_OFFSET - FIXMAP_SIZE - PKMAP_SIZE) -#define FIXMAP_SIZE PGDIR_SIZE /* only 1 PGD worth */ -#define KM_TYPE_NR ((FIXMAP_SIZE >> PAGE_SHIFT)/NR_CPUS) -#define FIXMAP_ADDR(nr) (FIXMAP_BASE + ((nr) << PAGE_SHIFT)) + +#define FIX_KMAP_SLOTS (KM_MAX_IDX * NR_CPUS) +#define FIX_KMAP_BEGIN (0UL) +#define FIX_KMAP_END ((FIX_KMAP_BEGIN + FIX_KMAP_SLOTS) - 1) + +#define FIXADDR_TOP (FIXMAP_BASE + (FIX_KMAP_END << PAGE_SHIFT)) + +/* + * This should be converted to the asm-generic version, but of course this + * is needlessly different from all other architectures. Sigh - tglx + */ +#define __fix_to_virt(x) (FIXADDR_TOP - ((x) << PAGE_SHIFT)) +#define __virt_to_fix(x) (((FIXADDR_TOP - ((x) & PAGE_MASK))) >> PAGE_SHIFT) /* start after fixmap area */ #define PKMAP_BASE (FIXMAP_BASE + FIXMAP_SIZE) -#define PKMAP_SIZE PGDIR_SIZE #define LAST_PKMAP (PKMAP_SIZE >> PAGE_SHIFT) #define LAST_PKMAP_MASK (LAST_PKMAP - 1) #define PKMAP_ADDR(nr) (PKMAP_BASE + ((nr) << PAGE_SHIFT)) @ arch/arc/include/asm/highmem.h:44 @ extern void kmap_init(void); +#define arch_kmap_local_post_unmap(vaddr) \ + local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE) + static inline void flush_cache_kmaps(void) { flush_cache_all(); } - #endif #endif @ arch/arc/include/asm/kmap_types.h:1 @ -/* SPDX-License-Identifier: GPL-2.0-only */ -/* - * Copyright (C) 2015 Synopsys, Inc. (www.synopsys.com) - */ - -#ifndef _ASM_KMAP_TYPES_H -#define _ASM_KMAP_TYPES_H - -/* - * We primarily need to define KM_TYPE_NR here but that in turn - * is a function of PGDIR_SIZE etc. - * To avoid circular deps issue, put everything in asm/highmem.h - */ -#endif @ arch/arc/mm/highmem.c:39 @ * This means each only has 1 PGDIR_SIZE worth of kvaddr mappings, which means * 2M of kvaddr space for typical config (8K page and 11:8:13 traversal split) * - * - fixmap anyhow needs a limited number of mappings. So 2M kvaddr == 256 PTE - * slots across NR_CPUS would be more than sufficient (generic code defines - * KM_TYPE_NR as 20). + * - The fixed KMAP slots for kmap_local/atomic() require KM_MAX_IDX slots per + * CPU. So the number of CPUs sharing a single PTE page is limited. * * - pkmap being preemptible, in theory could do with more than 256 concurrent * mappings. However, generic pkmap code: map_new_virtual(), doesn't traverse @ arch/arc/mm/highmem.c:49 @ */ extern pte_t * pkmap_page_table; -static pte_t * fixmap_page_table; - -void *kmap_atomic_high_prot(struct page *page, pgprot_t prot) -{ - int idx, cpu_idx; - unsigned long vaddr; - - cpu_idx = kmap_atomic_idx_push(); - idx = cpu_idx + KM_TYPE_NR * smp_processor_id(); - vaddr = FIXMAP_ADDR(idx); - - set_pte_at(&init_mm, vaddr, fixmap_page_table + idx, - mk_pte(page, prot)); - - return (void *)vaddr; -} -EXPORT_SYMBOL(kmap_atomic_high_prot); - -void kunmap_atomic_high(void *kv) -{ - unsigned long kvaddr = (unsigned long)kv; - - if (kvaddr >= FIXMAP_BASE && kvaddr < (FIXMAP_BASE + FIXMAP_SIZE)) { - - /* - * Because preemption is disabled, this vaddr can be associated - * with the current allocated index. - * But in case of multiple live kmap_atomic(), it still relies on - * callers to unmap in right order. - */ - int cpu_idx = kmap_atomic_idx(); - int idx = cpu_idx + KM_TYPE_NR * smp_processor_id(); - - WARN_ON(kvaddr != FIXMAP_ADDR(idx)); - - pte_clear(&init_mm, kvaddr, fixmap_page_table + idx); - local_flush_tlb_kernel_range(kvaddr, kvaddr + PAGE_SIZE); - - kmap_atomic_idx_pop(); - } -} -EXPORT_SYMBOL(kunmap_atomic_high); static noinline pte_t * __init alloc_kmap_pgtable(unsigned long kvaddr) { @ arch/arc/mm/highmem.c:68 @ void __init kmap_init(void) { /* Due to recursive include hell, we can't do this in processor.h */ BUILD_BUG_ON(PAGE_OFFSET < (VMALLOC_END + FIXMAP_SIZE + PKMAP_SIZE)); + BUILD_BUG_ON(LAST_PKMAP > PTRS_PER_PTE); + BUILD_BUG_ON(FIX_KMAP_SLOTS > PTRS_PER_PTE); - BUILD_BUG_ON(KM_TYPE_NR > PTRS_PER_PTE); pkmap_page_table = alloc_kmap_pgtable(PKMAP_BASE); - - BUILD_BUG_ON(LAST_PKMAP > PTRS_PER_PTE); - fixmap_page_table = alloc_kmap_pgtable(FIXMAP_BASE); + alloc_kmap_pgtable(FIXMAP_BASE); } @ arch/arm/Kconfig:34 @ config ARM select ARCH_OPTIONAL_KERNEL_RWX if ARCH_HAS_STRICT_KERNEL_RWX select ARCH_OPTIONAL_KERNEL_RWX_DEFAULT if CPU_V7 select ARCH_SUPPORTS_ATOMIC_RMW + select ARCH_SUPPORTS_RT if HAVE_POSIX_CPU_TIMERS_TASK_WORK select ARCH_USE_BUILTIN_BSWAP select ARCH_USE_CMPXCHG_LOCKREF select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT if MMU @ arch/arm/Kconfig:70 @ config ARM select HARDIRQS_SW_RESEND select HAVE_ARCH_AUDITSYSCALL if AEABI && !OABI_COMPAT select HAVE_ARCH_BITREVERSE if (CPU_32v7M || CPU_32v7) && !CPU_32v6 - select HAVE_ARCH_JUMP_LABEL if !XIP_KERNEL && !CPU_ENDIAN_BE32 && MMU + select HAVE_ARCH_JUMP_LABEL if !XIP_KERNEL && !CPU_ENDIAN_BE32 && MMU && !PREEMPT_RT select HAVE_ARCH_KGDB if !CPU_ENDIAN_BE32 && MMU select HAVE_ARCH_MMAP_RND_BITS if MMU select HAVE_ARCH_SECCOMP @ arch/arm/Kconfig:110 @ config ARM select HAVE_PERF_EVENTS select HAVE_PERF_REGS select HAVE_PERF_USER_STACK_DUMP + select HAVE_PREEMPT_LAZY select MMU_GATHER_RCU_TABLE_FREE if SMP && ARM_LPAE select HAVE_REGS_AND_STACK_ACCESS_API select HAVE_RSEQ @ arch/arm/Kconfig:126 @ config ARM select OLD_SIGSUSPEND3 select PCI_SYSCALL if PCI select PERF_USE_VMALLOC + select HAVE_POSIX_CPU_TIMERS_TASK_WORK if !KVM select RTC_LIB select SET_FS select SYS_SUPPORTS_APM_EMULATION @ arch/arm/Kconfig:1506 @ config HAVE_ARCH_PFN_VALID config HIGHMEM bool "High Memory Support" depends on MMU + select KMAP_LOCAL help The address space of ARM processors is only 4 Gigabytes large and it has to accommodate user address space, kernel address @ arch/arm/include/asm/fixmap.h:10 @ #define FIXADDR_TOP (FIXADDR_END - PAGE_SIZE) #include <linux/pgtable.h> -#include <asm/kmap_types.h> +#include <asm/kmap_size.h> enum fixed_addresses { FIX_EARLYCON_MEM_BASE, __end_of_permanent_fixed_addresses, FIX_KMAP_BEGIN = __end_of_permanent_fixed_addresses, - FIX_KMAP_END = FIX_KMAP_BEGIN + (KM_TYPE_NR * NR_CPUS) - 1, + FIX_KMAP_END = FIX_KMAP_BEGIN + (KM_MAX_IDX * NR_CPUS) - 1, /* Support writing RO kernel text via kprobes, jump labels, etc. */ FIX_TEXT_POKE0, @ arch/arm/include/asm/hardirq.h:5 @ #ifndef __ASM_HARDIRQ_H #define __ASM_HARDIRQ_H -#include <linux/cache.h> -#include <linux/threads.h> #include <asm/irq.h> -typedef struct { - unsigned int __softirq_pending; -} ____cacheline_aligned irq_cpustat_t; - -#include <linux/irq_cpustat.h> /* Standard mappings for irq_cpustat_t above */ - #define __ARCH_IRQ_EXIT_IRQS_DISABLED 1 +#define ack_bad_irq ack_bad_irq + +#include <asm-generic/hardirq.h> #endif /* __ASM_HARDIRQ_H */ @ arch/arm/include/asm/highmem.h:5 @ #ifndef _ASM_HIGHMEM_H #define _ASM_HIGHMEM_H -#include <asm/kmap_types.h> +#include <asm/kmap_size.h> +#include <asm/fixmap.h> #define PKMAP_BASE (PAGE_OFFSET - PMD_SIZE) #define LAST_PKMAP PTRS_PER_PTE @ arch/arm/include/asm/highmem.h:50 @ extern pte_t *pkmap_page_table; #ifdef ARCH_NEEDS_KMAP_HIGH_GET extern void *kmap_high_get(struct page *page); -#else + +static inline void *arch_kmap_local_high_get(struct page *page) +{ + if (IS_ENABLED(CONFIG_DEBUG_HIGHMEM) && !cache_is_vivt()) + return NULL; + return kmap_high_get(page); +} +#define arch_kmap_local_high_get arch_kmap_local_high_get + +#else /* ARCH_NEEDS_KMAP_HIGH_GET */ static inline void *kmap_high_get(struct page *page) { return NULL; } -#endif +#endif /* !ARCH_NEEDS_KMAP_HIGH_GET */ -/* - * The following functions are already defined by <linux/highmem.h> - * when CONFIG_HIGHMEM is not set. - */ -#ifdef CONFIG_HIGHMEM -extern void *kmap_atomic_pfn(unsigned long pfn); -#endif +#define arch_kmap_local_post_map(vaddr, pteval) \ + local_flush_tlb_kernel_page(vaddr) + +#define arch_kmap_local_pre_unmap(vaddr) \ +do { \ + if (cache_is_vivt()) \ + __cpuc_flush_dcache_area((void *)vaddr, PAGE_SIZE); \ +} while (0) + +#define arch_kmap_local_post_unmap(vaddr) \ + local_flush_tlb_kernel_page(vaddr) #endif @ arch/arm/include/asm/irq.h:34 @ void handle_IRQ(unsigned int, struct pt_regs *); void init_IRQ(void); #ifdef CONFIG_SMP +#include <linux/cpumask.h> + extern void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self); #define arch_trigger_cpumask_backtrace arch_trigger_cpumask_backtrace @ arch/arm/include/asm/kmap_types.h:1 @ -/* SPDX-License-Identifier: GPL-2.0 */ -#ifndef __ARM_KMAP_TYPES_H -#define __ARM_KMAP_TYPES_H - -/* - * This is the "bare minimum". AIO seems to require this. - */ -#define KM_TYPE_NR 16 - -#endif @ arch/arm/include/asm/spinlock_types.h:5 @ #ifndef __ASM_SPINLOCK_TYPES_H #define __ASM_SPINLOCK_TYPES_H -#ifndef __LINUX_SPINLOCK_TYPES_H -# error "please don't include this file directly" -#endif - #define TICKET_SHIFT 16 typedef struct { @ arch/arm/include/asm/thread_info.h:49 @ struct cpu_context_save { struct thread_info { unsigned long flags; /* low level flags */ int preempt_count; /* 0 => preemptable, <0 => bug */ + int preempt_lazy_count; /* 0 => preemptable, <0 => bug */ mm_segment_t addr_limit; /* address limit */ struct task_struct *task; /* main task structure */ __u32 cpu; /* cpu */ @ arch/arm/include/asm/thread_info.h:138 @ extern int vfp_restore_user_hwstate(struct user_vfp *, #define TIF_SYSCALL_TRACE 4 /* syscall trace active */ #define TIF_SYSCALL_AUDIT 5 /* syscall auditing active */ #define TIF_SYSCALL_TRACEPOINT 6 /* syscall tracepoint instrumentation */ -#define TIF_SECCOMP 7 /* seccomp syscall filtering active */ +#define TIF_NEED_RESCHED_LAZY 7 +#define TIF_SECCOMP 8 /* seccomp syscall filtering active */ #define TIF_USING_IWMMXT 17 #define TIF_MEMDIE 18 /* is terminating due to OOM killer */ @ arch/arm/include/asm/thread_info.h:148 @ extern int vfp_restore_user_hwstate(struct user_vfp *, #define _TIF_SIGPENDING (1 << TIF_SIGPENDING) #define _TIF_NEED_RESCHED (1 << TIF_NEED_RESCHED) #define _TIF_NOTIFY_RESUME (1 << TIF_NOTIFY_RESUME) +#define _TIF_NEED_RESCHED_LAZY (1 << TIF_NEED_RESCHED_LAZY) #define _TIF_UPROBE (1 << TIF_UPROBE) #define _TIF_SYSCALL_TRACE (1 << TIF_SYSCALL_TRACE) #define _TIF_SYSCALL_AUDIT (1 << TIF_SYSCALL_AUDIT) @ arch/arm/include/asm/thread_info.h:164 @ extern int vfp_restore_user_hwstate(struct user_vfp *, * Change these and you break ASM code in entry-common.S */ #define _TIF_WORK_MASK (_TIF_NEED_RESCHED | _TIF_SIGPENDING | \ - _TIF_NOTIFY_RESUME | _TIF_UPROBE) + _TIF_NOTIFY_RESUME | _TIF_UPROBE | \ + _TIF_NEED_RESCHED_LAZY) #endif /* __KERNEL__ */ #endif /* __ASM_ARM_THREAD_INFO_H */ @ arch/arm/kernel/asm-offsets.c:46 @ int main(void) BLANK(); DEFINE(TI_FLAGS, offsetof(struct thread_info, flags)); DEFINE(TI_PREEMPT, offsetof(struct thread_info, preempt_count)); + DEFINE(TI_PREEMPT_LAZY, offsetof(struct thread_info, preempt_lazy_count)); DEFINE(TI_ADDR_LIMIT, offsetof(struct thread_info, addr_limit)); DEFINE(TI_TASK, offsetof(struct thread_info, task)); DEFINE(TI_CPU, offsetof(struct thread_info, cpu)); @ arch/arm/kernel/entry-armv.S:209 @ __irq_svc: #ifdef CONFIG_PREEMPTION ldr r8, [tsk, #TI_PREEMPT] @ get preempt count - ldr r0, [tsk, #TI_FLAGS] @ get flags teq r8, #0 @ if preempt count != 0 + bne 1f @ return from exeption + ldr r0, [tsk, #TI_FLAGS] @ get flags + tst r0, #_TIF_NEED_RESCHED @ if NEED_RESCHED is set + blne svc_preempt @ preempt! + + ldr r8, [tsk, #TI_PREEMPT_LAZY] @ get preempt lazy count + teq r8, #0 @ if preempt lazy count != 0 movne r0, #0 @ force flags to 0 - tst r0, #_TIF_NEED_RESCHED + tst r0, #_TIF_NEED_RESCHED_LAZY blne svc_preempt +1: #endif svc_exit r5, irq = 1 @ return from exception @ arch/arm/kernel/entry-armv.S:235 @ svc_preempt: 1: bl preempt_schedule_irq @ irq en/disable is done inside ldr r0, [tsk, #TI_FLAGS] @ get new tasks TI_FLAGS tst r0, #_TIF_NEED_RESCHED + bne 1b + tst r0, #_TIF_NEED_RESCHED_LAZY reteq r8 @ go again - b 1b + ldr r0, [tsk, #TI_PREEMPT_LAZY] @ get preempt lazy count + teq r0, #0 @ if preempt lazy count != 0 + beq 1b + ret r8 @ go again + #endif __und_fault: @ arch/arm/kernel/entry-common.S:56 @ __ret_fast_syscall: cmp r2, #TASK_SIZE blne addr_limit_check_failed ldr r1, [tsk, #TI_FLAGS] @ re-check for syscall tracing - tst r1, #_TIF_SYSCALL_WORK | _TIF_WORK_MASK + tst r1, #((_TIF_SYSCALL_WORK | _TIF_WORK_MASK) & ~_TIF_SECCOMP) + bne fast_work_pending + tst r1, #_TIF_SECCOMP bne fast_work_pending @ arch/arm/kernel/entry-common.S:95 @ __ret_fast_syscall: cmp r2, #TASK_SIZE blne addr_limit_check_failed ldr r1, [tsk, #TI_FLAGS] @ re-check for syscall tracing - tst r1, #_TIF_SYSCALL_WORK | _TIF_WORK_MASK + tst r1, #((_TIF_SYSCALL_WORK | _TIF_WORK_MASK) & ~_TIF_SECCOMP) + bne do_slower_path + tst r1, #_TIF_SECCOMP beq no_work_pending +do_slower_path: UNWIND(.fnend ) ENDPROC(ret_fast_syscall) @ arch/arm/kernel/signal.c:652 @ do_work_pending(struct pt_regs *regs, unsigned int thread_flags, int syscall) */ trace_hardirqs_off(); do { - if (likely(thread_flags & _TIF_NEED_RESCHED)) { + if (likely(thread_flags & (_TIF_NEED_RESCHED | + _TIF_NEED_RESCHED_LAZY))) { schedule(); } else { if (unlikely(!user_mode(regs))) @ arch/arm/kernel/smp.c:674 @ static void do_handle_IPI(int ipinr) break; case IPI_CPU_BACKTRACE: - printk_nmi_enter(); nmi_cpu_backtrace(get_irq_regs()); - printk_nmi_exit(); break; default: @ arch/arm/mm/Makefile:22 @ obj-$(CONFIG_MODULES) += proc-syms.o obj-$(CONFIG_DEBUG_VIRTUAL) += physaddr.o obj-$(CONFIG_ALIGNMENT_TRAP) += alignment.o -obj-$(CONFIG_HIGHMEM) += highmem.o obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o obj-$(CONFIG_ARM_PV_FIXUP) += pv-fixup-asm.o @ arch/arm/mm/cache-feroceon-l2.c:52 @ static inline unsigned long l2_get_va(unsigned long paddr) * we simply install a virtual mapping for it only for the * TLB lookup to occur, hence no need to flush the untouched * memory mapping afterwards (note: a cache flush may happen - * in some circumstances depending on the path taken in kunmap_atomic). + * in some circumstances depending on the path taken in kunmap_local). */ - void *vaddr = kmap_atomic_pfn(paddr >> PAGE_SHIFT); + void *vaddr = kmap_local_pfn(paddr >> PAGE_SHIFT); return (unsigned long)vaddr + (paddr & ~PAGE_MASK); #else return __phys_to_virt(paddr); @ arch/arm/mm/cache-feroceon-l2.c:64 @ static inline unsigned long l2_get_va(unsigned long paddr) static inline void l2_put_va(unsigned long vaddr) { #ifdef CONFIG_HIGHMEM - kunmap_atomic((void *)vaddr); + kunmap_local((void *)vaddr); #endif } @ arch/arm/mm/cache-xsc3l2.c:62 @ static inline void l2_unmap_va(unsigned long va) { #ifdef CONFIG_HIGHMEM if (va != -1) - kunmap_atomic((void *)va); + kunmap_local((void *)va); #endif } @ arch/arm/mm/cache-xsc3l2.c:78 @ static inline unsigned long l2_map_va(unsigned long pa, unsigned long prev_va) * in place for it. */ l2_unmap_va(prev_va); - va = (unsigned long)kmap_atomic_pfn(pa >> PAGE_SHIFT); + va = (unsigned long)kmap_local_pfn(pa >> PAGE_SHIFT); } return va + (pa_offset >> (32 - PAGE_SHIFT)); #else @ arch/arm/mm/fault.c:403 @ do_translation_fault(unsigned long addr, unsigned int fsr, if (addr < TASK_SIZE) return do_page_fault(addr, fsr, regs); + if (interrupts_enabled(regs)) + local_irq_enable(); + if (user_mode(regs)) goto bad_area; @ arch/arm/mm/fault.c:476 @ do_translation_fault(unsigned long addr, unsigned int fsr, static int do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) { + if (interrupts_enabled(regs)) + local_irq_enable(); + do_bad_area(addr, fsr, regs); return 0; } @ arch/arm/mm/highmem.c:1 @ -// SPDX-License-Identifier: GPL-2.0-only -/* - * arch/arm/mm/highmem.c -- ARM highmem support - * - * Author: Nicolas Pitre - * Created: september 8, 2008 - * Copyright: Marvell Semiconductors Inc. - */ - -#include <linux/module.h> -#include <linux/highmem.h> -#include <linux/interrupt.h> -#include <asm/fixmap.h> -#include <asm/cacheflush.h> -#include <asm/tlbflush.h> -#include "mm.h" - -static inline void set_fixmap_pte(int idx, pte_t pte) -{ - unsigned long vaddr = __fix_to_virt(idx); - pte_t *ptep = virt_to_kpte(vaddr); - - set_pte_ext(ptep, pte, 0); - local_flush_tlb_kernel_page(vaddr); -} - -static inline pte_t get_fixmap_pte(unsigned long vaddr) -{ - pte_t *ptep = virt_to_kpte(vaddr); - - return *ptep; -} - -void *kmap_atomic_high_prot(struct page *page, pgprot_t prot) -{ - unsigned int idx; - unsigned long vaddr; - void *kmap; - int type; - -#ifdef CONFIG_DEBUG_HIGHMEM - /* - * There is no cache coherency issue when non VIVT, so force the - * dedicated kmap usage for better debugging purposes in that case. - */ - if (!cache_is_vivt()) - kmap = NULL; - else -#endif - kmap = kmap_high_get(page); - if (kmap) - return kmap; - - type = kmap_atomic_idx_push(); - - idx = FIX_KMAP_BEGIN + type + KM_TYPE_NR * smp_processor_id(); - vaddr = __fix_to_virt(idx); -#ifdef CONFIG_DEBUG_HIGHMEM - /* - * With debugging enabled, kunmap_atomic forces that entry to 0. - * Make sure it was indeed properly unmapped. - */ - BUG_ON(!pte_none(get_fixmap_pte(vaddr))); -#endif - /* - * When debugging is off, kunmap_atomic leaves the previous mapping - * in place, so the contained TLB flush ensures the TLB is updated - * with the new mapping. - */ - set_fixmap_pte(idx, mk_pte(page, prot)); - - return (void *)vaddr; -} -EXPORT_SYMBOL(kmap_atomic_high_prot); - -void kunmap_atomic_high(void *kvaddr) -{ - unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK; - int idx, type; - - if (kvaddr >= (void *)FIXADDR_START) { - type = kmap_atomic_idx(); - idx = FIX_KMAP_BEGIN + type + KM_TYPE_NR * smp_processor_id(); - - if (cache_is_vivt()) - __cpuc_flush_dcache_area((void *)vaddr, PAGE_SIZE); -#ifdef CONFIG_DEBUG_HIGHMEM - BUG_ON(vaddr != __fix_to_virt(idx)); - set_fixmap_pte(idx, __pte(0)); -#else - (void) idx; /* to kill a warning */ -#endif - kmap_atomic_idx_pop(); - } else if (vaddr >= PKMAP_ADDR(0) && vaddr < PKMAP_ADDR(LAST_PKMAP)) { - /* this address was obtained through kmap_high_get() */ - kunmap_high(pte_page(pkmap_page_table[PKMAP_NR(vaddr)])); - } -} -EXPORT_SYMBOL(kunmap_atomic_high); - -void *kmap_atomic_pfn(unsigned long pfn) -{ - unsigned long vaddr; - int idx, type; - struct page *page = pfn_to_page(pfn); - - preempt_disable(); - pagefault_disable(); - if (!PageHighMem(page)) - return page_address(page); - - type = kmap_atomic_idx_push(); - idx = FIX_KMAP_BEGIN + type + KM_TYPE_NR * smp_processor_id(); - vaddr = __fix_to_virt(idx); -#ifdef CONFIG_DEBUG_HIGHMEM - BUG_ON(!pte_none(get_fixmap_pte(vaddr))); -#endif - set_fixmap_pte(idx, pfn_pte(pfn, kmap_prot)); - - return (void *)vaddr; -} @ arch/arm64/Kconfig:79 @ config ARM64 select ARCH_SUPPORTS_ATOMIC_RMW select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG) select ARCH_SUPPORTS_NUMA_BALANCING + select ARCH_SUPPORTS_RT if HAVE_POSIX_CPU_TIMERS_TASK_WORK select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT select ARCH_WANT_DEFAULT_BPF_JIT select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT @ arch/arm64/Kconfig:177 @ config ARM64 select HAVE_PERF_EVENTS select HAVE_PERF_REGS select HAVE_PERF_USER_STACK_DUMP + select HAVE_PREEMPT_LAZY select HAVE_REGS_AND_STACK_ACCESS_API select HAVE_FUNCTION_ARG_ACCESS_API select HAVE_FUTEX_CMPXCHG if FUTEX @ arch/arm64/Kconfig:199 @ config ARM64 select PCI_DOMAINS_GENERIC if PCI select PCI_ECAM if (ACPI && PCI) select PCI_SYSCALL if PCI + select HAVE_POSIX_CPU_TIMERS_TASK_WORK if !KVM select POWER_RESET select POWER_SUPPLY select SET_FS @ arch/arm64/include/asm/hardirq.h:16 @ #include <asm/kvm_arm.h> #include <asm/sysreg.h> -typedef struct { - unsigned int __softirq_pending; -} ____cacheline_aligned irq_cpustat_t; - -#include <linux/irq_cpustat.h> /* Standard mappings for irq_cpustat_t above */ +#define ack_bad_irq ack_bad_irq +#include <asm-generic/hardirq.h> #define __ARCH_IRQ_EXIT_IRQS_DISABLED 1 @ arch/arm64/include/asm/preempt.h:73 @ static inline bool __preempt_count_dec_and_test(void) * interrupt occurring between the non-atomic READ_ONCE/WRITE_ONCE * pair. */ - return !pc || !READ_ONCE(ti->preempt_count); + if (!pc || !READ_ONCE(ti->preempt_count)) + return true; +#ifdef CONFIG_PREEMPT_LAZY + if ((pc & ~PREEMPT_NEED_RESCHED)) + return false; + if (current_thread_info()->preempt_lazy_count) + return false; + return test_thread_flag(TIF_NEED_RESCHED_LAZY); +#else + return false; +#endif } static inline bool should_resched(int preempt_offset) { +#ifdef CONFIG_PREEMPT_LAZY + u64 pc = READ_ONCE(current_thread_info()->preempt_count); + if (pc == preempt_offset) + return true; + + if ((pc & ~PREEMPT_NEED_RESCHED) != preempt_offset) + return false; + + if (current_thread_info()->preempt_lazy_count) + return false; + return test_thread_flag(TIF_NEED_RESCHED_LAZY); +#else u64 pc = READ_ONCE(current_thread_info()->preempt_count); return pc == preempt_offset; +#endif } #ifdef CONFIG_PREEMPTION void preempt_schedule(void); +#ifdef CONFIG_PREEMPT_RT +void preempt_schedule_lock(void); +#endif #define __preempt_schedule() preempt_schedule() void preempt_schedule_notrace(void); #define __preempt_schedule_notrace() preempt_schedule_notrace() @ arch/arm64/include/asm/spinlock_types.h:8 @ #ifndef __ASM_SPINLOCK_TYPES_H #define __ASM_SPINLOCK_TYPES_H -#if !defined(__LINUX_SPINLOCK_TYPES_H) && !defined(__ASM_SPINLOCK_H) -# error "please don't include this file directly" -#endif - #include <asm-generic/qspinlock_types.h> #include <asm-generic/qrwlock_types.h> @ arch/arm64/include/asm/thread_info.h:32 @ struct thread_info { #ifdef CONFIG_ARM64_SW_TTBR0_PAN u64 ttbr0; /* saved TTBR0_EL1 */ #endif + int preempt_lazy_count; /* 0 => preemptable, <0 => bug */ union { u64 preempt_count; /* 0 => preemptible, <0 => bug */ struct { @ arch/arm64/include/asm/thread_info.h:72 @ void arch_release_task_struct(struct task_struct *tsk); #define TIF_UPROBE 4 /* uprobe breakpoint or singlestep */ #define TIF_FSCHECK 5 /* Check FS is USER_DS on return */ #define TIF_MTE_ASYNC_FAULT 6 /* MTE Asynchronous Tag Check Fault */ +#define TIF_NEED_RESCHED_LAZY 7 #define TIF_SYSCALL_TRACE 8 /* syscall trace active */ #define TIF_SYSCALL_AUDIT 9 /* syscall auditing */ #define TIF_SYSCALL_TRACEPOINT 10 /* syscall tracepoint for ftrace */ @ arch/arm64/include/asm/thread_info.h:103 @ void arch_release_task_struct(struct task_struct *tsk); #define _TIF_32BIT (1 << TIF_32BIT) #define _TIF_SVE (1 << TIF_SVE) #define _TIF_MTE_ASYNC_FAULT (1 << TIF_MTE_ASYNC_FAULT) +#define _TIF_NEED_RESCHED_LAZY (1 << TIF_NEED_RESCHED_LAZY) #define _TIF_WORK_MASK (_TIF_NEED_RESCHED | _TIF_SIGPENDING | \ _TIF_NOTIFY_RESUME | _TIF_FOREIGN_FPSTATE | \ - _TIF_UPROBE | _TIF_FSCHECK | _TIF_MTE_ASYNC_FAULT) + _TIF_UPROBE | _TIF_FSCHECK | _TIF_MTE_ASYNC_FAULT | \ + _TIF_NEED_RESCHED_LAZY) +#define _TIF_NEED_RESCHED_MASK (_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY) #define _TIF_SYSCALL_WORK (_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT | \ _TIF_SYSCALL_TRACEPOINT | _TIF_SECCOMP | \ _TIF_SYSCALL_EMU) @ arch/arm64/kernel/asm-offsets.c:33 @ int main(void) BLANK(); DEFINE(TSK_TI_FLAGS, offsetof(struct task_struct, thread_info.flags)); DEFINE(TSK_TI_PREEMPT, offsetof(struct task_struct, thread_info.preempt_count)); + DEFINE(TSK_TI_PREEMPT_LAZY, offsetof(struct task_struct, thread_info.preempt_lazy_count)); DEFINE(TSK_TI_ADDR_LIMIT, offsetof(struct task_struct, thread_info.addr_limit)); #ifdef CONFIG_ARM64_SW_TTBR0_PAN DEFINE(TSK_TI_TTBR0, offsetof(struct task_struct, thread_info.ttbr0)); @ arch/arm64/kernel/entry.S:518 @ alternative_if ARM64_HAS_IRQ_PRIO_MASKING mrs x0, daif orr x24, x24, x0 alternative_else_nop_endif - cbnz x24, 1f // preempt count != 0 || NMI return path - bl arm64_preempt_schedule_irq // irq en/disable is done inside + + cbz x24, 1f // (need_resched + count) == 0 + cbnz w24, 2f // count != 0 + + ldr w24, [tsk, #TSK_TI_PREEMPT_LAZY] // get preempt lazy count + cbnz w24, 2f // preempt lazy count != 0 + + ldr x0, [tsk, #TSK_TI_FLAGS] // get flags + tbz x0, #TIF_NEED_RESCHED_LAZY, 2f // needs rescheduling? 1: + bl arm64_preempt_schedule_irq // irq en/disable is done inside +2: #endif mov x0, sp @ arch/arm64/kernel/fpsimd.c:229 @ static void sve_free(struct task_struct *task) __sve_free(task); } +static void *sve_free_atomic(struct task_struct *task) +{ + void *sve_state = task->thread.sve_state; + + WARN_ON(test_tsk_thread_flag(task, TIF_SVE)); + + task->thread.sve_state = NULL; + return sve_state; +} + /* * TIF_SVE controls whether a task can use SVE without trapping while * in userspace, and also the way a task's FPSIMD/SVE state is stored @ arch/arm64/kernel/fpsimd.c:1035 @ void fpsimd_thread_switch(struct task_struct *next) void fpsimd_flush_thread(void) { int vl, supported_vl; + void *mem = NULL; if (!system_supports_fpsimd()) return; @ arch/arm64/kernel/fpsimd.c:1048 @ void fpsimd_flush_thread(void) if (system_supports_sve()) { clear_thread_flag(TIF_SVE); - sve_free(current); + mem = sve_free_atomic(current); /* * Reset the task vector length as required. @ arch/arm64/kernel/fpsimd.c:1082 @ void fpsimd_flush_thread(void) } put_cpu_fpsimd_context(); + kfree(mem); } /* @ arch/arm64/kernel/signal.c:922 @ asmlinkage void do_notify_resume(struct pt_regs *regs, /* Check valid user FS if needed */ addr_limit_user_check(); - if (thread_flags & _TIF_NEED_RESCHED) { + if (thread_flags & _TIF_NEED_RESCHED_MASK) { /* Unmask Debug and SError for the next task */ local_daif_restore(DAIF_PROCCTX_NOIRQ); @ arch/arm64/kvm/arm.c:711 @ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) * involves poking the GIC, which must be done in a * non-preemptible context. */ - preempt_disable(); + migrate_disable(); kvm_pmu_flush_hwstate(vcpu); @ arch/arm64/kvm/arm.c:760 @ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) kvm_timer_sync_user(vcpu); kvm_vgic_sync_hwstate(vcpu); local_irq_enable(); - preempt_enable(); + migrate_enable(); continue; } @ arch/arm64/kvm/arm.c:832 @ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) /* Exit types that need handling before we can be preempted */ handle_exit_early(vcpu, ret); - preempt_enable(); + migrate_enable(); /* * The ARMv8 architecture doesn't give the hypervisor @ arch/csky/Kconfig:289 @ config NR_CPUS config HIGHMEM bool "High Memory Support" depends on !CPU_CK610 + select KMAP_LOCAL default y config FORCE_MAX_ZONEORDER @ arch/csky/include/asm/fixmap.h:11 @ #include <asm/memory.h> #ifdef CONFIG_HIGHMEM #include <linux/threads.h> -#include <asm/kmap_types.h> +#include <asm/kmap_size.h> #endif enum fixed_addresses { @ arch/csky/include/asm/fixmap.h:20 @ enum fixed_addresses { #endif #ifdef CONFIG_HIGHMEM FIX_KMAP_BEGIN, - FIX_KMAP_END = FIX_KMAP_BEGIN + (KM_TYPE_NR * NR_CPUS) - 1, + FIX_KMAP_END = FIX_KMAP_BEGIN + (KM_MAX_IDX * NR_CPUS) - 1, #endif __end_of_fixed_addresses }; @ arch/csky/include/asm/highmem.h:12 @ #include <linux/init.h> #include <linux/interrupt.h> #include <linux/uaccess.h> -#include <asm/kmap_types.h> +#include <asm/kmap_size.h> #include <asm/cache.h> /* undef for production */ @ arch/csky/include/asm/highmem.h:35 @ extern pte_t *pkmap_page_table; #define ARCH_HAS_KMAP_FLUSH_TLB extern void kmap_flush_tlb(unsigned long addr); -extern void *kmap_atomic_pfn(unsigned long pfn); #define flush_cache_kmaps() do {} while (0) +#define arch_kmap_local_post_map(vaddr, pteval) kmap_flush_tlb(vaddr) +#define arch_kmap_local_post_unmap(vaddr) kmap_flush_tlb(vaddr) + extern void kmap_init(void); #endif /* __KERNEL__ */ @ arch/csky/mm/highmem.c:12 @ #include <asm/tlbflush.h> #include <asm/cacheflush.h> -static pte_t *kmap_pte; - unsigned long highstart_pfn, highend_pfn; void kmap_flush_tlb(unsigned long addr) @ arch/csky/mm/highmem.c:20 @ void kmap_flush_tlb(unsigned long addr) } EXPORT_SYMBOL(kmap_flush_tlb); -void *kmap_atomic_high_prot(struct page *page, pgprot_t prot) -{ - unsigned long vaddr; - int idx, type; - - type = kmap_atomic_idx_push(); - idx = type + KM_TYPE_NR*smp_processor_id(); - vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); -#ifdef CONFIG_DEBUG_HIGHMEM - BUG_ON(!pte_none(*(kmap_pte - idx))); -#endif - set_pte(kmap_pte-idx, mk_pte(page, prot)); - flush_tlb_one((unsigned long)vaddr); - - return (void *)vaddr; -} -EXPORT_SYMBOL(kmap_atomic_high_prot); - -void kunmap_atomic_high(void *kvaddr) -{ - unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK; - int idx; - - if (vaddr < FIXADDR_START) - return; - -#ifdef CONFIG_DEBUG_HIGHMEM - idx = KM_TYPE_NR*smp_processor_id() + kmap_atomic_idx(); - - BUG_ON(vaddr != __fix_to_virt(FIX_KMAP_BEGIN + idx)); - - pte_clear(&init_mm, vaddr, kmap_pte - idx); - flush_tlb_one(vaddr); -#else - (void) idx; /* to kill a warning */ -#endif - kmap_atomic_idx_pop(); -} -EXPORT_SYMBOL(kunmap_atomic_high); - -/* - * This is the same as kmap_atomic() but can map memory that doesn't - * have a struct page associated with it. - */ -void *kmap_atomic_pfn(unsigned long pfn) -{ - unsigned long vaddr; - int idx, type; - - pagefault_disable(); - - type = kmap_atomic_idx_push(); - idx = type + KM_TYPE_NR*smp_processor_id(); - vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); - set_pte(kmap_pte-idx, pfn_pte(pfn, PAGE_KERNEL)); - flush_tlb_one(vaddr); - - return (void *) vaddr; -} - -static void __init kmap_pages_init(void) +void __init kmap_init(void) { unsigned long vaddr; pgd_t *pgd; @ arch/csky/mm/highmem.c:37 @ static void __init kmap_pages_init(void) pte = pte_offset_kernel(pmd, vaddr); pkmap_page_table = pte; } - -void __init kmap_init(void) -{ - unsigned long vaddr; - - kmap_pages_init(); - - vaddr = __fix_to_virt(FIX_KMAP_BEGIN); - - kmap_pte = pte_offset_kernel((pmd_t *)pgd_offset_k(vaddr), vaddr); -} @ arch/hexagon/include/asm/spinlock_types.h:11 @ #ifndef _ASM_SPINLOCK_TYPES_H #define _ASM_SPINLOCK_TYPES_H -#ifndef __LINUX_SPINLOCK_TYPES_H -# error "please don't include this file directly" -#endif - typedef struct { volatile unsigned int lock; } arch_spinlock_t; @ arch/ia64/include/asm/kmap_types.h:1 @ -/* SPDX-License-Identifier: GPL-2.0 */ -#ifndef _ASM_IA64_KMAP_TYPES_H -#define _ASM_IA64_KMAP_TYPES_H - -#ifdef CONFIG_DEBUG_HIGHMEM -#define __WITH_KM_FENCE -#endif - -#include <asm-generic/kmap_types.h> - -#undef __WITH_KM_FENCE - -#endif /* _ASM_IA64_KMAP_TYPES_H */ @ arch/ia64/include/asm/spinlock_types.h:5 @ #ifndef _ASM_IA64_SPINLOCK_TYPES_H #define _ASM_IA64_SPINLOCK_TYPES_H -#ifndef __LINUX_SPINLOCK_TYPES_H -# error "please don't include this file directly" -#endif - typedef struct { volatile unsigned int lock; } arch_spinlock_t; @ arch/ia64/kernel/time.c:141 @ void vtime_account_kernel(struct task_struct *tsk) struct thread_info *ti = task_thread_info(tsk); __u64 stime = vtime_delta(tsk); - if ((tsk->flags & PF_VCPU) && !irq_count()) + if (tsk->flags & PF_VCPU) ti->gtime += stime; - else if (hardirq_count()) - ti->hardirq_time += stime; - else if (in_serving_softirq()) - ti->softirq_time += stime; else ti->stime += stime; } @ arch/ia64/kernel/time.c:155 @ void vtime_account_idle(struct task_struct *tsk) ti->idle_time += vtime_delta(tsk); } +void vtime_account_softirq(struct task_struct *tsk) +{ + struct thread_info *ti = task_thread_info(tsk); + + ti->softirq_time += vtime_delta(tsk); +} + +void vtime_account_hardirq(struct task_struct *tsk) +{ + struct thread_info *ti = task_thread_info(tsk); + + ti->hardirq_time += vtime_delta(tsk); +} + #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ static irqreturn_t @ arch/microblaze/Kconfig:158 @ config XILINX_UNCACHED_SHADOW config HIGHMEM bool "High memory support" depends on MMU + select KMAP_LOCAL help The address space of Microblaze processors is only 4 Gigabytes large and it has to accommodate user address space, kernel address @ arch/microblaze/include/asm/fixmap.h:23 @ #include <asm/page.h> #ifdef CONFIG_HIGHMEM #include <linux/threads.h> -#include <asm/kmap_types.h> +#include <asm/kmap_size.h> #endif #define FIXADDR_TOP ((unsigned long)(-PAGE_SIZE)) @ arch/microblaze/include/asm/fixmap.h:50 @ enum fixed_addresses { FIX_HOLE, #ifdef CONFIG_HIGHMEM FIX_KMAP_BEGIN, /* reserved pte's for temporary kernel mappings */ - FIX_KMAP_END = FIX_KMAP_BEGIN + (KM_TYPE_NR * num_possible_cpus()) - 1, + FIX_KMAP_END = FIX_KMAP_BEGIN + (KM_MAX_IDX * num_possible_cpus()) - 1, #endif __end_of_fixed_addresses }; @ arch/microblaze/include/asm/highmem.h:28 @ #include <linux/uaccess.h> #include <asm/fixmap.h> -extern pte_t *kmap_pte; extern pte_t *pkmap_page_table; /* @ arch/microblaze/include/asm/highmem.h:54 @ extern pte_t *pkmap_page_table; #define flush_cache_kmaps() { flush_icache(); flush_dcache(); } +#define arch_kmap_local_post_map(vaddr, pteval) \ + local_flush_tlb_page(NULL, vaddr); +#define arch_kmap_local_post_unmap(vaddr) \ + local_flush_tlb_page(NULL, vaddr); + #endif /* __KERNEL__ */ #endif /* _ASM_HIGHMEM_H */ @ arch/microblaze/mm/Makefile:9 @ obj-y := consistent.o init.o obj-$(CONFIG_MMU) += pgtable.o mmu_context.o fault.o -obj-$(CONFIG_HIGHMEM) += highmem.o @ arch/microblaze/mm/highmem.c:1 @ -// SPDX-License-Identifier: GPL-2.0 -/* - * highmem.c: virtual kernel memory mappings for high memory - * - * PowerPC version, stolen from the i386 version. - * - * Used in CONFIG_HIGHMEM systems for memory pages which - * are not addressable by direct kernel virtual addresses. - * - * Copyright (C) 1999 Gerhard Wichert, Siemens AG - * Gerhard.Wichert@pdb.siemens.de - * - * - * Redesigned the x86 32-bit VM architecture to deal with - * up to 16 Terrabyte physical memory. With current x86 CPUs - * we now support up to 64 Gigabytes physical RAM. - * - * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> - * - * Reworked for PowerPC by various contributors. Moved from - * highmem.h by Benjamin Herrenschmidt (c) 2009 IBM Corp. - */ - -#include <linux/export.h> -#include <linux/highmem.h> - -/* - * The use of kmap_atomic/kunmap_atomic is discouraged - kmap/kunmap - * gives a more generic (and caching) interface. But kmap_atomic can - * be used in IRQ contexts, so in some (very limited) cases we need - * it. - */ -#include <asm/tlbflush.h> - -void *kmap_atomic_high_prot(struct page *page, pgprot_t prot) -{ - - unsigned long vaddr; - int idx, type; - - type = kmap_atomic_idx_push(); - idx = type + KM_TYPE_NR*smp_processor_id(); - vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); -#ifdef CONFIG_DEBUG_HIGHMEM - BUG_ON(!pte_none(*(kmap_pte-idx))); -#endif - set_pte_at(&init_mm, vaddr, kmap_pte-idx, mk_pte(page, prot)); - local_flush_tlb_page(NULL, vaddr); - - return (void *) vaddr; -} -EXPORT_SYMBOL(kmap_atomic_high_prot); - -void kunmap_atomic_high(void *kvaddr) -{ - unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK; - int type; - unsigned int idx; - - if (vaddr < __fix_to_virt(FIX_KMAP_END)) - return; - - type = kmap_atomic_idx(); - - idx = type + KM_TYPE_NR * smp_processor_id(); -#ifdef CONFIG_DEBUG_HIGHMEM - BUG_ON(vaddr != __fix_to_virt(FIX_KMAP_BEGIN + idx)); -#endif - /* - * force other mappings to Oops if they'll try to access - * this pte without first remap it - */ - pte_clear(&init_mm, vaddr, kmap_pte-idx); - local_flush_tlb_page(NULL, vaddr); - - kmap_atomic_idx_pop(); -} -EXPORT_SYMBOL(kunmap_atomic_high); @ arch/microblaze/mm/init.c:52 @ unsigned long lowmem_size; EXPORT_SYMBOL(min_low_pfn); EXPORT_SYMBOL(max_low_pfn); -#ifdef CONFIG_HIGHMEM -pte_t *kmap_pte; -EXPORT_SYMBOL(kmap_pte); - static void __init highmem_init(void) { pr_debug("%x\n", (u32)PKMAP_BASE); map_page(PKMAP_BASE, 0, 0); /* XXX gross */ pkmap_page_table = virt_to_kpte(PKMAP_BASE); - - kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN)); } static void highmem_setup(void) @ arch/mips/Kconfig:2729 @ config WAR_MIPS34K_MISSED_ITLB config HIGHMEM bool "High Memory Support" depends on 32BIT && CPU_SUPPORTS_HIGHMEM && SYS_SUPPORTS_HIGHMEM && !CPU_MIPS32_3_5_EVA + select KMAP_LOCAL config CPU_SUPPORTS_HIGHMEM bool @ arch/mips/include/asm/fixmap.h:20 @ #include <spaces.h> #ifdef CONFIG_HIGHMEM #include <linux/threads.h> -#include <asm/kmap_types.h> +#include <asm/kmap_size.h> #endif /* @ arch/mips/include/asm/fixmap.h:55 @ enum fixed_addresses { #ifdef CONFIG_HIGHMEM /* reserved pte's for temporary kernel mappings */ FIX_KMAP_BEGIN = FIX_CMAP_END + 1, - FIX_KMAP_END = FIX_KMAP_BEGIN+(KM_TYPE_NR*NR_CPUS)-1, + FIX_KMAP_END = FIX_KMAP_BEGIN + (KM_MAX_IDX * NR_CPUS) - 1, #endif __end_of_fixed_addresses }; @ arch/mips/include/asm/highmem.h:27 @ #include <linux/interrupt.h> #include <linux/uaccess.h> #include <asm/cpu-features.h> -#include <asm/kmap_types.h> +#include <asm/kmap_size.h> /* declarations for highmem.c */ extern unsigned long highstart_pfn, highend_pfn; @ arch/mips/include/asm/highmem.h:51 @ extern pte_t *pkmap_page_table; #define ARCH_HAS_KMAP_FLUSH_TLB extern void kmap_flush_tlb(unsigned long addr); -extern void *kmap_atomic_pfn(unsigned long pfn); #define flush_cache_kmaps() BUG_ON(cpu_has_dc_aliases) -extern void kmap_init(void); +#define arch_kmap_local_post_map(vaddr, pteval) local_flush_tlb_one(vaddr) +#define arch_kmap_local_post_unmap(vaddr) local_flush_tlb_one(vaddr) #endif /* __KERNEL__ */ @ arch/mips/include/asm/kmap_types.h:1 @ -/* SPDX-License-Identifier: GPL-2.0 */ -#ifndef _ASM_KMAP_TYPES_H -#define _ASM_KMAP_TYPES_H - -#ifdef CONFIG_DEBUG_HIGHMEM -#define __WITH_KM_FENCE -#endif - -#include <asm-generic/kmap_types.h> - -#undef __WITH_KM_FENCE - -#endif @ arch/mips/kernel/crash_dump.c:8 @ #include <linux/uaccess.h> #include <linux/slab.h> -static void *kdump_buf_page; - /** * copy_oldmem_page - copy one page from "oldmem" * @pfn: page frame number to be copied @ arch/mips/kernel/crash_dump.c:18 @ static void *kdump_buf_page; * @userbuf: if set, @buf is in user address space, use copy_to_user(), * otherwise @buf is in kernel address space, use memcpy(). * - * Copy a page from "oldmem". For this page, there is no pte mapped + * Copy a page from "oldmem". For this page, there might be no pte mapped * in the current kernel. - * - * Calling copy_to_user() in atomic context is not desirable. Hence first - * copying the data to a pre-allocated kernel page and then copying to user - * space in non-atomic context. */ -ssize_t copy_oldmem_page(unsigned long pfn, char *buf, - size_t csize, unsigned long offset, int userbuf) +ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize, + unsigned long offset, int userbuf) { void *vaddr; if (!csize) return 0; - vaddr = kmap_atomic_pfn(pfn); + vaddr = kmap_local_pfn(pfn); if (!userbuf) { - memcpy(buf, (vaddr + offset), csize); - kunmap_atomic(vaddr); + memcpy(buf, vaddr + offset, csize); } else { - if (!kdump_buf_page) { - pr_warn("Kdump: Kdump buffer page not allocated\n"); - - return -EFAULT; - } - copy_page(kdump_buf_page, vaddr); - kunmap_atomic(vaddr); - if (copy_to_user(buf, (kdump_buf_page + offset), csize)) - return -EFAULT; + if (copy_to_user(buf, vaddr + offset, csize)) + csize = -EFAULT; } return csize; } - -static int __init kdump_buf_page_init(void) -{ - int ret = 0; - - kdump_buf_page = kmalloc(PAGE_SIZE, GFP_KERNEL); - if (!kdump_buf_page) { - pr_warn("Kdump: Failed to allocate kdump buffer page\n"); - ret = -ENOMEM; - } - - return ret; -} -arch_initcall(kdump_buf_page_init); @ arch/mips/mm/highmem.c:11 @ #include <asm/fixmap.h> #include <asm/tlbflush.h> -static pte_t *kmap_pte; - unsigned long highstart_pfn, highend_pfn; void kmap_flush_tlb(unsigned long addr) @ arch/mips/mm/highmem.c:18 @ void kmap_flush_tlb(unsigned long addr) flush_tlb_one(addr); } EXPORT_SYMBOL(kmap_flush_tlb); - -void *kmap_atomic_high_prot(struct page *page, pgprot_t prot) -{ - unsigned long vaddr; - int idx, type; - - type = kmap_atomic_idx_push(); - idx = type + KM_TYPE_NR*smp_processor_id(); - vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); -#ifdef CONFIG_DEBUG_HIGHMEM - BUG_ON(!pte_none(*(kmap_pte - idx))); -#endif - set_pte(kmap_pte-idx, mk_pte(page, prot)); - local_flush_tlb_one((unsigned long)vaddr); - - return (void*) vaddr; -} -EXPORT_SYMBOL(kmap_atomic_high_prot); - -void kunmap_atomic_high(void *kvaddr) -{ - unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK; - int type __maybe_unused; - - if (vaddr < FIXADDR_START) - return; - - type = kmap_atomic_idx(); -#ifdef CONFIG_DEBUG_HIGHMEM - { - int idx = type + KM_TYPE_NR * smp_processor_id(); - - BUG_ON(vaddr != __fix_to_virt(FIX_KMAP_BEGIN + idx)); - - /* - * force other mappings to Oops if they'll try to access - * this pte without first remap it - */ - pte_clear(&init_mm, vaddr, kmap_pte-idx); - local_flush_tlb_one(vaddr); - } -#endif - kmap_atomic_idx_pop(); -} -EXPORT_SYMBOL(kunmap_atomic_high); - -/* - * This is the same as kmap_atomic() but can map memory that doesn't - * have a struct page associated with it. - */ -void *kmap_atomic_pfn(unsigned long pfn) -{ - unsigned long vaddr; - int idx, type; - - preempt_disable(); - pagefault_disable(); - - type = kmap_atomic_idx_push(); - idx = type + KM_TYPE_NR*smp_processor_id(); - vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); - set_pte(kmap_pte-idx, pfn_pte(pfn, PAGE_KERNEL)); - flush_tlb_one(vaddr); - - return (void*) vaddr; -} - -void __init kmap_init(void) -{ - unsigned long kmap_vstart; - - /* cache the first kmap pte */ - kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN); - kmap_pte = virt_to_kpte(kmap_vstart); -} @ arch/mips/mm/init.c:39 @ #include <asm/cachectl.h> #include <asm/cpu.h> #include <asm/dma.h> -#include <asm/kmap_types.h> #include <asm/maar.h> #include <asm/mmu_context.h> #include <asm/sections.h> @ arch/mips/mm/init.c:404 @ void __init paging_init(void) pagetable_init(); -#ifdef CONFIG_HIGHMEM - kmap_init(); -#endif #ifdef CONFIG_ZONE_DMA max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; #endif @ arch/nds32/Kconfig.cpu:160 @ config HW_SUPPORT_UNALIGNMENT_ACCESS config HIGHMEM bool "High Memory Support" depends on MMU && !CPU_CACHE_ALIASING + select KMAP_LOCAL help The address space of Andes processors is only 4 Gigabytes large and it has to accommodate user address space, kernel address @ arch/nds32/include/asm/fixmap.h:9 @ #ifdef CONFIG_HIGHMEM #include <linux/threads.h> -#include <asm/kmap_types.h> +#include <asm/kmap_size.h> #endif enum fixed_addresses { @ arch/nds32/include/asm/fixmap.h:17 @ enum fixed_addresses { FIX_KMAP_RESERVED, FIX_KMAP_BEGIN, #ifdef CONFIG_HIGHMEM - FIX_KMAP_END = FIX_KMAP_BEGIN + (KM_TYPE_NR * NR_CPUS), + FIX_KMAP_END = FIX_KMAP_BEGIN + (KM_MAX_IDX * NR_CPUS) - 1, #endif FIX_EARLYCON_MEM_BASE, __end_of_fixed_addresses @ arch/nds32/include/asm/highmem.h:8 @ #define _ASM_HIGHMEM_H #include <asm/proc-fns.h> -#include <asm/kmap_types.h> #include <asm/fixmap.h> /* @ arch/nds32/include/asm/highmem.h:47 @ extern pte_t *pkmap_page_table; extern void kmap_init(void); /* - * The following functions are already defined by <linux/highmem.h> - * when CONFIG_HIGHMEM is not set. + * FIXME: The below looks broken vs. a kmap_atomic() in task context which + * is interupted and another kmap_atomic() happens in interrupt context. + * But what do I know about nds32. -- tglx */ -#ifdef CONFIG_HIGHMEM -extern void *kmap_atomic_pfn(unsigned long pfn); -#endif +#define arch_kmap_local_post_map(vaddr, pteval) \ + do { \ + __nds32__tlbop_inv(vaddr); \ + __nds32__mtsr_dsb(vaddr, NDS32_SR_TLB_VPN); \ + __nds32__tlbop_rwr(pteval); \ + __nds32__isb(); \ + } while (0) + +#define arch_kmap_local_pre_unmap(vaddr) \ + do { \ + __nds32__tlbop_inv(vaddr); \ + __nds32__isb(); \ + } while (0) #endif @ arch/nds32/mm/Makefile:6 @ obj-y := extable.o tlb.o fault.o init.o mmap.o \ mm-nds32.o cacheflush.o proc.o obj-$(CONFIG_ALIGNMENT_TRAP) += alignment.o -obj-$(CONFIG_HIGHMEM) += highmem.o ifdef CONFIG_FUNCTION_TRACER CFLAGS_REMOVE_proc.o = $(CC_FLAGS_FTRACE) @ arch/nds32/mm/highmem.c:1 @ -// SPDX-License-Identifier: GPL-2.0 -// Copyright (C) 2005-2017 Andes Technology Corporation - -#include <linux/export.h> -#include <linux/highmem.h> -#include <linux/sched.h> -#include <linux/smp.h> -#include <linux/interrupt.h> -#include <linux/memblock.h> -#include <asm/fixmap.h> -#include <asm/tlbflush.h> - -void *kmap_atomic_high_prot(struct page *page, pgprot_t prot) -{ - unsigned int idx; - unsigned long vaddr, pte; - int type; - pte_t *ptep; - - type = kmap_atomic_idx_push(); - - idx = type + KM_TYPE_NR * smp_processor_id(); - vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); - pte = (page_to_pfn(page) << PAGE_SHIFT) | prot; - ptep = pte_offset_kernel(pmd_off_k(vaddr), vaddr); - set_pte(ptep, pte); - - __nds32__tlbop_inv(vaddr); - __nds32__mtsr_dsb(vaddr, NDS32_SR_TLB_VPN); - __nds32__tlbop_rwr(pte); - __nds32__isb(); - return (void *)vaddr; -} -EXPORT_SYMBOL(kmap_atomic_high_prot); - -void kunmap_atomic_high(void *kvaddr) -{ - if (kvaddr >= (void *)FIXADDR_START) { - unsigned long vaddr = (unsigned long)kvaddr; - pte_t *ptep; - kmap_atomic_idx_pop(); - __nds32__tlbop_inv(vaddr); - __nds32__isb(); - ptep = pte_offset_kernel(pmd_off_k(vaddr), vaddr); - set_pte(ptep, 0); - } -} -EXPORT_SYMBOL(kunmap_atomic_high); @ arch/openrisc/mm/init.c:36 @ #include <asm/io.h> #include <asm/tlb.h> #include <asm/mmu_context.h> -#include <asm/kmap_types.h> #include <asm/fixmap.h> #include <asm/tlbflush.h> #include <asm/sections.h> @ arch/openrisc/mm/ioremap.c:18 @ #include <linux/io.h> #include <linux/pgtable.h> #include <asm/pgalloc.h> -#include <asm/kmap_types.h> #include <asm/fixmap.h> #include <asm/bug.h> #include <linux/sched.h> @ arch/parisc/include/asm/hardirq.h:35 @ typedef struct { DECLARE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); #define __ARCH_IRQ_STAT -#define __IRQ_STAT(cpu, member) (irq_stat[cpu].member) #define inc_irq_stat(member) this_cpu_inc(irq_stat.member) #define __inc_irq_stat(member) __this_cpu_inc(irq_stat.member) #define ack_bad_irq(irq) WARN(1, "unexpected IRQ trap at vector %02x\n", irq) @ arch/parisc/include/asm/kmap_types.h:1 @ -/* SPDX-License-Identifier: GPL-2.0 */ -#ifndef _ASM_KMAP_TYPES_H -#define _ASM_KMAP_TYPES_H - -#ifdef CONFIG_DEBUG_HIGHMEM -#define __WITH_KM_FENCE -#endif - -#include <asm-generic/kmap_types.h> - -#undef __WITH_KM_FENCE - -#endif @ arch/powerpc/Kconfig:149 @ config PPC select ARCH_MIGHT_HAVE_PC_SERIO select ARCH_OPTIONAL_KERNEL_RWX if ARCH_HAS_STRICT_KERNEL_RWX select ARCH_SUPPORTS_ATOMIC_RMW + select ARCH_SUPPORTS_RT if HAVE_POSIX_CPU_TIMERS_TASK_WORK select ARCH_USE_BUILTIN_BSWAP select ARCH_USE_CMPXCHG_LOCKREF if PPC64 select ARCH_USE_QUEUED_RWLOCKS if PPC_QUEUED_SPINLOCKS @ arch/powerpc/Kconfig:234 @ config PPC select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && HAVE_PERF_EVENTS_NMI && !HAVE_HARDLOCKUP_DETECTOR_ARCH select HAVE_PERF_REGS select HAVE_PERF_USER_STACK_DUMP + select HAVE_PREEMPT_LAZY select MMU_GATHER_RCU_TABLE_FREE select MMU_GATHER_PAGE_SIZE select HAVE_REGS_AND_STACK_ACCESS_API @ arch/powerpc/Kconfig:242 @ config PPC select HAVE_SYSCALL_TRACEPOINTS select HAVE_VIRT_CPU_ACCOUNTING select HAVE_IRQ_TIME_ACCOUNTING + select HAVE_POSIX_CPU_TIMERS_TASK_WORK if !KVM select HAVE_RSEQ select IOMMU_HELPER if PPC64 select IRQ_DOMAIN @ arch/powerpc/Kconfig:416 @ menu "Kernel options" config HIGHMEM bool "High memory support" depends on PPC32 + select KMAP_LOCAL source "kernel/Kconfig.hz" @ arch/powerpc/include/asm/cmpxchg.h:8 @ #ifdef __KERNEL__ #include <linux/compiler.h> #include <asm/synch.h> -#include <linux/bug.h> +#include <linux/bits.h> #ifdef __BIG_ENDIAN #define BITOFF_CAL(size, off) ((sizeof(u32) - size - off) * BITS_PER_BYTE) @ arch/powerpc/include/asm/fixmap.h:23 @ #include <asm/page.h> #ifdef CONFIG_HIGHMEM #include <linux/threads.h> -#include <asm/kmap_types.h> +#include <asm/kmap_size.h> #endif #ifdef CONFIG_PPC64 @ arch/powerpc/include/asm/fixmap.h:64 @ enum fixed_addresses { FIX_EARLY_DEBUG_BASE = FIX_EARLY_DEBUG_TOP+(ALIGN(SZ_128K, PAGE_SIZE)/PAGE_SIZE)-1, #ifdef CONFIG_HIGHMEM FIX_KMAP_BEGIN, /* reserved pte's for temporary kernel mappings */ - FIX_KMAP_END = FIX_KMAP_BEGIN+(KM_TYPE_NR*NR_CPUS)-1, + FIX_KMAP_END = FIX_KMAP_BEGIN + (KM_MAX_IDX * NR_CPUS) - 1, #endif #ifdef CONFIG_PPC_8xx /* For IMMR we need an aligned 512K area */ @ arch/powerpc/include/asm/highmem.h:27 @ #ifdef __KERNEL__ #include <linux/interrupt.h> -#include <asm/kmap_types.h> #include <asm/cacheflush.h> #include <asm/page.h> #include <asm/fixmap.h> -extern pte_t *kmap_pte; extern pte_t *pkmap_page_table; /* @ arch/powerpc/include/asm/highmem.h:61 @ extern pte_t *pkmap_page_table; #define flush_cache_kmaps() flush_cache_all() +#define arch_kmap_local_post_map(vaddr, pteval) \ + local_flush_tlb_page(NULL, vaddr) +#define arch_kmap_local_post_unmap(vaddr) \ + local_flush_tlb_page(NULL, vaddr) + #endif /* __KERNEL__ */ #endif /* _ASM_HIGHMEM_H */ @ arch/powerpc/include/asm/kmap_types.h:1 @ -/* SPDX-License-Identifier: GPL-2.0-or-later */ -#ifndef _ASM_POWERPC_KMAP_TYPES_H -#define _ASM_POWERPC_KMAP_TYPES_H - -#ifdef __KERNEL__ - -/* - */ - -#define KM_TYPE_NR 16 - -#endif /* __KERNEL__ */ -#endif /* _ASM_POWERPC_KMAP_TYPES_H */ @ arch/powerpc/include/asm/simple_spinlock_types.h:5 @ #ifndef _ASM_POWERPC_SIMPLE_SPINLOCK_TYPES_H #define _ASM_POWERPC_SIMPLE_SPINLOCK_TYPES_H -#ifndef __LINUX_SPINLOCK_TYPES_H +#if !defined(__LINUX_SPINLOCK_TYPES_H) && !defined(__LINUX_RT_MUTEX_H) # error "please don't include this file directly" #endif @ arch/powerpc/include/asm/spinlock_types.h:5 @ #ifndef _ASM_POWERPC_SPINLOCK_TYPES_H #define _ASM_POWERPC_SPINLOCK_TYPES_H -#ifndef __LINUX_SPINLOCK_TYPES_H -# error "please don't include this file directly" -#endif - #ifdef CONFIG_PPC_QUEUED_SPINLOCKS #include <asm-generic/qspinlock_types.h> #include <asm-generic/qrwlock_types.h> @ arch/powerpc/include/asm/stackprotector.h:27 @ static __always_inline void boot_init_stack_canary(void) unsigned long canary; /* Try to get a semi random initial value. */ +#ifdef CONFIG_PREEMPT_RT + canary = (unsigned long)&canary; +#else canary = get_random_canary(); +#endif canary ^= mftb(); canary ^= LINUX_VERSION_CODE; canary &= CANARY_MASK; @ arch/powerpc/include/asm/thread_info.h:51 @ struct thread_info { int preempt_count; /* 0 => preemptable, <0 => BUG */ + int preempt_lazy_count; /* 0 => preemptable, + <0 => BUG */ unsigned long local_flags; /* private flags for thread */ #ifdef CONFIG_LIVEPATCH unsigned long *livepatch_sp; @ arch/powerpc/include/asm/thread_info.h:102 @ void arch_setup_new_exec(void); #define TIF_SINGLESTEP 8 /* singlestepping active */ #define TIF_NOHZ 9 /* in adaptive nohz mode */ #define TIF_SECCOMP 10 /* secure computing */ -#define TIF_RESTOREALL 11 /* Restore all regs (implies NOERROR) */ -#define TIF_NOERROR 12 /* Force successful syscall return */ + +#define TIF_NEED_RESCHED_LAZY 11 /* lazy rescheduling necessary */ +#define TIF_SYSCALL_TRACEPOINT 12 /* syscall tracepoint instrumentation */ + #define TIF_NOTIFY_RESUME 13 /* callback before returning to user */ #define TIF_UPROBE 14 /* breakpointed or single-stepping */ -#define TIF_SYSCALL_TRACEPOINT 15 /* syscall tracepoint instrumentation */ #define TIF_EMULATE_STACK_STORE 16 /* Is an instruction emulation for stack store? */ #define TIF_MEMDIE 17 /* is terminating due to OOM killer */ @ arch/powerpc/include/asm/thread_info.h:116 @ void arch_setup_new_exec(void); #endif #define TIF_POLLING_NRFLAG 19 /* true if poll_idle() is polling TIF_NEED_RESCHED */ #define TIF_32BIT 20 /* 32 bit binary */ +#define TIF_RESTOREALL 21 /* Restore all regs (implies NOERROR) */ +#define TIF_NOERROR 22 /* Force successful syscall return */ + /* as above, but as bit values */ #define _TIF_SYSCALL_TRACE (1<<TIF_SYSCALL_TRACE) @ arch/powerpc/include/asm/thread_info.h:138 @ void arch_setup_new_exec(void); #define _TIF_SYSCALL_TRACEPOINT (1<<TIF_SYSCALL_TRACEPOINT) #define _TIF_EMULATE_STACK_STORE (1<<TIF_EMULATE_STACK_STORE) #define _TIF_NOHZ (1<<TIF_NOHZ) +#define _TIF_NEED_RESCHED_LAZY (1<<TIF_NEED_RESCHED_LAZY) #define _TIF_SYSCALL_EMU (1<<TIF_SYSCALL_EMU) #define _TIF_SYSCALL_DOTRACE (_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT | \ _TIF_SECCOMP | _TIF_SYSCALL_TRACEPOINT | \ @ arch/powerpc/include/asm/thread_info.h:146 @ void arch_setup_new_exec(void); #define _TIF_USER_WORK_MASK (_TIF_SIGPENDING | _TIF_NEED_RESCHED | \ _TIF_NOTIFY_RESUME | _TIF_UPROBE | \ - _TIF_RESTORE_TM | _TIF_PATCH_PENDING) + _TIF_RESTORE_TM | _TIF_PATCH_PENDING | \ + _TIF_NEED_RESCHED_LAZY) #define _TIF_PERSYSCALL_MASK (_TIF_RESTOREALL|_TIF_NOERROR) +#define _TIF_NEED_RESCHED_MASK (_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY) /* Bits in local_flags */ /* Don't move TLF_NAPPING without adjusting the code in entry_32.S */ @ arch/powerpc/kernel/asm-offsets.c:192 @ int main(void) OFFSET(TI_FLAGS, thread_info, flags); OFFSET(TI_LOCAL_FLAGS, thread_info, local_flags); OFFSET(TI_PREEMPT, thread_info, preempt_count); + OFFSET(TI_PREEMPT_LAZY, thread_info, preempt_lazy_count); #ifdef CONFIG_PPC64 OFFSET(DCACHEL1BLOCKSIZE, ppc64_caches, l1d.block_size); @ arch/powerpc/kernel/entry_32.S:417 @ ret_from_syscall: mtmsr r10 lwz r9,TI_FLAGS(r2) li r8,-MAX_ERRNO - andi. r0,r9,(_TIF_SYSCALL_DOTRACE|_TIF_SINGLESTEP|_TIF_USER_WORK_MASK|_TIF_PERSYSCALL_MASK) + lis r0,(_TIF_SYSCALL_DOTRACE|_TIF_SINGLESTEP|_TIF_USER_WORK_MASK|_TIF_PERSYSCALL_MASK)@h + ori r0,r0, (_TIF_SYSCALL_DOTRACE|_TIF_SINGLESTEP|_TIF_USER_WORK_MASK|_TIF_PERSYSCALL_MASK)@l + and. r0,r9,r0 bne- syscall_exit_work cmplw 0,r3,r8 blt+ syscall_exit_cont @ arch/powerpc/kernel/entry_32.S:535 @ syscall_dotrace: b syscall_dotrace_cont syscall_exit_work: - andi. r0,r9,_TIF_RESTOREALL + andis. r0,r9,_TIF_RESTOREALL@h beq+ 0f REST_NVGPRS(r1) b 2f 0: cmplw 0,r3,r8 blt+ 1f - andi. r0,r9,_TIF_NOERROR + andis. r0,r9,_TIF_NOERROR@h bne- 1f lwz r11,_CCR(r1) /* Load CR */ neg r3,r3 @ arch/powerpc/kernel/entry_32.S:550 @ syscall_exit_work: 1: stw r6,RESULT(r1) /* Save result */ stw r3,GPR3(r1) /* Update return value */ -2: andi. r0,r9,(_TIF_PERSYSCALL_MASK) +2: andis. r0,r9,(_TIF_PERSYSCALL_MASK)@h beq 4f /* Clear per-syscall TIF flags if any are set. */ - li r11,_TIF_PERSYSCALL_MASK + lis r11,(_TIF_PERSYSCALL_MASK)@h addi r12,r2,TI_FLAGS 3: lwarx r8,0,r12 andc r8,r8,r11 @ arch/powerpc/kernel/entry_32.S:932 @ resume_kernel: cmpwi 0,r0,0 /* if non-zero, just restore regs and return */ bne restore_kuap andi. r8,r8,_TIF_NEED_RESCHED + bne+ 1f + lwz r0,TI_PREEMPT_LAZY(r2) + cmpwi 0,r0,0 /* if non-zero, just restore regs and return */ + bne restore_kuap + lwz r0,TI_FLAGS(r2) + andi. r0,r0,_TIF_NEED_RESCHED_LAZY beq+ restore_kuap +1: lwz r3,_MSR(r1) andi. r0,r3,MSR_EE /* interrupts off? */ beq restore_kuap /* don't schedule if so */ @ arch/powerpc/kernel/entry_32.S:1260 @ global_dbcr0: #endif /* !(CONFIG_4xx || CONFIG_BOOKE) */ do_work: /* r10 contains MSR_KERNEL here */ - andi. r0,r9,_TIF_NEED_RESCHED + andi. r0,r9,_TIF_NEED_RESCHED_MASK beq do_user_signal do_resched: /* r10 contains MSR_KERNEL here */ @ arch/powerpc/kernel/entry_32.S:1279 @ recheck: LOAD_REG_IMMEDIATE(r10,MSR_KERNEL) mtmsr r10 /* disable interrupts */ lwz r9,TI_FLAGS(r2) - andi. r0,r9,_TIF_NEED_RESCHED + andi. r0,r9,_TIF_NEED_RESCHED_MASK bne- do_resched andi. r0,r9,_TIF_USER_WORK_MASK beq restore_user @ arch/powerpc/kernel/exceptions-64e.S:1083 @ _GLOBAL(ret_from_except_lite) li r10, -1 mtspr SPRN_DBSR,r10 b restore -1: andi. r0,r4,_TIF_NEED_RESCHED +1: andi. r0,r4,_TIF_NEED_RESCHED_MASK beq 2f bl restore_interrupts SCHEDULE_USER @ arch/powerpc/kernel/exceptions-64e.S:1135 @ resume_kernel: bne- 0b 1: -#ifdef CONFIG_PREEMPT +#ifdef CONFIG_PREEMPTION /* Check if we need to preempt */ + lwz r8,TI_PREEMPT(r9) + cmpwi 0,r8,0 /* if non-zero, just restore regs and return */ + bne restore andi. r0,r4,_TIF_NEED_RESCHED + bne+ check_count + + andi. r0,r4,_TIF_NEED_RESCHED_LAZY beq+ restore + lwz r8,TI_PREEMPT_LAZY(r9) + /* Check that preempt_count() == 0 and interrupts are enabled */ - lwz r8,TI_PREEMPT(r9) +check_count: cmpwi cr0,r8,0 bne restore ld r0,SOFTE(r1) @ arch/powerpc/kernel/exceptions-64e.S:1169 @ resume_kernel: * interrupted after loading SRR0/1. */ wrteei 0 -#endif /* CONFIG_PREEMPT */ +#endif /* CONFIG_PREEMPTION */ restore: /* @ arch/powerpc/kernel/irq.c:756 @ void *mcheckirq_ctx[NR_CPUS] __read_mostly; void *softirq_ctx[NR_CPUS] __read_mostly; void *hardirq_ctx[NR_CPUS] __read_mostly; +#ifndef CONFIG_PREEMPT_RT void do_softirq_own_stack(void) { call_do_softirq(softirq_ctx[smp_processor_id()]); } +#endif irq_hw_number_t virq_to_hw(unsigned int virq) { @ arch/powerpc/kernel/misc_32.S:34 @ * We store the saved ksp_limit in the unused part * of the STACK_FRAME_OVERHEAD */ +#ifndef CONFIG_PREEMPT_RT _GLOBAL(call_do_softirq) mflr r0 stw r0,4(r1) @ arch/powerpc/kernel/misc_32.S:50 @ _GLOBAL(call_do_softirq) stw r10,THREAD+KSP_LIMIT(r2) mtlr r0 blr +#endif /* * void call_do_irq(struct pt_regs *regs, void *sp); @ arch/powerpc/kernel/misc_64.S:30 @ .text +#ifndef CONFIG_PREEMPT_RT _GLOBAL(call_do_softirq) mflr r0 std r0,16(r1) @ arch/powerpc/kernel/misc_64.S:41 @ _GLOBAL(call_do_softirq) ld r0,16(r1) mtlr r0 blr +#endif _GLOBAL(call_do_irq) mflr r0 @ arch/powerpc/kernel/nvram_64.c:76 @ static const char *nvram_os_partitions[] = { }; static void oops_to_nvram(struct kmsg_dumper *dumper, - enum kmsg_dump_reason reason); + enum kmsg_dump_reason reason, + struct kmsg_dumper_iter *iter); static struct kmsg_dumper nvram_kmsg_dumper = { .dump = oops_to_nvram @ arch/powerpc/kernel/nvram_64.c:647 @ void __init nvram_init_oops_partition(int rtas_partition_exists) * partition. If that's too much, go back and capture uncompressed text. */ static void oops_to_nvram(struct kmsg_dumper *dumper, - enum kmsg_dump_reason reason) + enum kmsg_dump_reason reason, + struct kmsg_dumper_iter *iter) { struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf; static unsigned int oops_count = 0; @ arch/powerpc/kernel/nvram_64.c:686 @ static void oops_to_nvram(struct kmsg_dumper *dumper, return; if (big_oops_buf) { - kmsg_dump_get_buffer(dumper, false, + kmsg_dump_get_buffer(iter, false, big_oops_buf, big_oops_buf_sz, &text_len); rc = zip_oops(text_len); } if (rc != 0) { - kmsg_dump_rewind(dumper); - kmsg_dump_get_buffer(dumper, false, + kmsg_dump_rewind(iter); + kmsg_dump_get_buffer(iter, false, oops_data, oops_data_sz, &text_len); err_type = ERR_TYPE_KERNEL_PANIC; oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION); @ arch/powerpc/kernel/syscall_64.c:196 @ notrace unsigned long syscall_exit_prepare(unsigned long r3, ti_flags = READ_ONCE(*ti_flagsp); while (unlikely(ti_flags & (_TIF_USER_WORK_MASK & ~_TIF_RESTORE_TM))) { local_irq_enable(); - if (ti_flags & _TIF_NEED_RESCHED) { + if (ti_flags & _TIF_NEED_RESCHED_MASK) { schedule(); } else { /* @ arch/powerpc/kernel/syscall_64.c:280 @ notrace unsigned long interrupt_exit_user_prepare(struct pt_regs *regs, unsigned ti_flags = READ_ONCE(*ti_flagsp); while (unlikely(ti_flags & (_TIF_USER_WORK_MASK & ~_TIF_RESTORE_TM))) { local_irq_enable(); /* returning to user: may enable */ - if (ti_flags & _TIF_NEED_RESCHED) { + if (ti_flags & _TIF_NEED_RESCHED_MASK) { schedule(); } else { if (ti_flags & _TIF_SIGPENDING) @ arch/powerpc/kernel/syscall_64.c:364 @ notrace unsigned long interrupt_exit_kernel_prepare(struct pt_regs *regs, unsign /* Returning to a kernel context with local irqs enabled. */ WARN_ON_ONCE(!(regs->msr & MSR_EE)); again: - if (IS_ENABLED(CONFIG_PREEMPT)) { + if (IS_ENABLED(CONFIG_PREEMPTION)) { /* Return to preemptible kernel context */ if (unlikely(*ti_flagsp & _TIF_NEED_RESCHED)) { if (preempt_count() == 0) preempt_schedule_irq(); + } else if (unlikely(*ti_flagsp & _TIF_NEED_RESCHED_LAZY)) { + if ((preempt_count() == 0) && + (current_thread_info()->preempt_lazy_count == 0)) + preempt_schedule_irq(); } } @ arch/powerpc/kernel/time.c:315 @ static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct, return stime_scaled; } -static unsigned long vtime_delta(struct task_struct *tsk, +static unsigned long vtime_delta(struct cpu_accounting_data *acct, unsigned long *stime_scaled, unsigned long *steal_time) { unsigned long now, stime; - struct cpu_accounting_data *acct = get_accounting(tsk); WARN_ON_ONCE(!irqs_disabled()); @ arch/powerpc/kernel/time.c:334 @ static unsigned long vtime_delta(struct task_struct *tsk, return stime; } +static void vtime_delta_kernel(struct cpu_accounting_data *acct, + unsigned long *stime, unsigned long *stime_scaled) +{ + unsigned long steal_time; + + *stime = vtime_delta(acct, stime_scaled, &steal_time); + *stime -= min(*stime, steal_time); + acct->steal_time += steal_time; +} + void vtime_account_kernel(struct task_struct *tsk) { - unsigned long stime, stime_scaled, steal_time; struct cpu_accounting_data *acct = get_accounting(tsk); + unsigned long stime, stime_scaled; - stime = vtime_delta(tsk, &stime_scaled, &steal_time); - - stime -= min(stime, steal_time); - acct->steal_time += steal_time; + vtime_delta_kernel(acct, &stime, &stime_scaled); - if ((tsk->flags & PF_VCPU) && !irq_count()) { + if (tsk->flags & PF_VCPU) { acct->gtime += stime; #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME acct->utime_scaled += stime_scaled; #endif } else { - if (hardirq_count()) - acct->hardirq_time += stime; - else if (in_serving_softirq()) - acct->softirq_time += stime; - else - acct->stime += stime; - + acct->stime += stime; #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME acct->stime_scaled += stime_scaled; #endif @ arch/powerpc/kernel/time.c:370 @ void vtime_account_idle(struct task_struct *tsk) unsigned long stime, stime_scaled, steal_time; struct cpu_accounting_data *acct = get_accounting(tsk); - stime = vtime_delta(tsk, &stime_scaled, &steal_time); + stime = vtime_delta(acct, &stime_scaled, &steal_time); acct->idle_time += stime + steal_time; } +static void vtime_account_irq_field(struct cpu_accounting_data *acct, + unsigned long *field) +{ + unsigned long stime, stime_scaled; + + vtime_delta_kernel(acct, &stime, &stime_scaled); + *field += stime; +#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME + acct->stime_scaled += stime_scaled; +#endif +} + +void vtime_account_softirq(struct task_struct *tsk) +{ + struct cpu_accounting_data *acct = get_accounting(tsk); + vtime_account_irq_field(acct, &acct->softirq_time); +} + +void vtime_account_hardirq(struct task_struct *tsk) +{ + struct cpu_accounting_data *acct = get_accounting(tsk); + vtime_account_irq_field(acct, &acct->hardirq_time); +} + static void vtime_flush_scaled(struct task_struct *tsk, struct cpu_accounting_data *acct) { @ arch/powerpc/kernel/traps.c:173 @ extern void panic_flush_kmsg_start(void) extern void panic_flush_kmsg_end(void) { - printk_safe_flush_on_panic(); kmsg_dump(KMSG_DUMP_PANIC); bust_spinlocks(0); debug_locks_off(); @ arch/powerpc/kernel/traps.c:262 @ static char *get_mmu_str(void) static int __die(const char *str, struct pt_regs *regs, long err) { + const char *pr = ""; + printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter); + if (IS_ENABLED(CONFIG_PREEMPTION)) + pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT"; + printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n", IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE", PAGE_SIZE / 1024, get_mmu_str(), - IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "", + pr, IS_ENABLED(CONFIG_SMP) ? " SMP" : "", IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "", debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "", @ arch/powerpc/kernel/watchdog.c:184 @ static void watchdog_smp_panic(int cpu, u64 tb) wd_smp_unlock(&flags); - printk_safe_flush(); - /* - * printk_safe_flush() seems to require another print - * before anything actually goes out to console. - */ if (sysctl_hardlockup_all_cpu_backtrace) trigger_allbutself_cpu_backtrace(); @ arch/powerpc/kexec/crash.c:314 @ void default_machine_crash_shutdown(struct pt_regs *regs) unsigned int i; int (*old_handler)(struct pt_regs *regs); - /* Avoid hardlocking with irresponsive CPU holding logbuf_lock */ - printk_nmi_enter(); - /* * This function is only called after the system * has panicked or is otherwise in a critical state. @ arch/powerpc/kvm/Kconfig:181 @ config KVM_E500MC config KVM_MPIC bool "KVM in-kernel MPIC emulation" depends on KVM && E500 + depends on !PREEMPT_RT select HAVE_KVM_IRQCHIP select HAVE_KVM_IRQFD select HAVE_KVM_IRQ_ROUTING @ arch/powerpc/mm/Makefile:19 @ obj-$(CONFIG_NEED_MULTIPLE_NODES) += numa.o obj-$(CONFIG_PPC_MM_SLICES) += slice.o obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o obj-$(CONFIG_NOT_COHERENT_CACHE) += dma-noncoherent.o -obj-$(CONFIG_HIGHMEM) += highmem.o obj-$(CONFIG_PPC_COPRO_BASE) += copro_fault.o obj-$(CONFIG_PPC_PTDUMP) += ptdump/ obj-$(CONFIG_KASAN) += kasan/ @ arch/powerpc/mm/highmem.c:1 @ -// SPDX-License-Identifier: GPL-2.0 -/* - * highmem.c: virtual kernel memory mappings for high memory - * - * PowerPC version, stolen from the i386 version. - * - * Used in CONFIG_HIGHMEM systems for memory pages which - * are not addressable by direct kernel virtual addresses. - * - * Copyright (C) 1999 Gerhard Wichert, Siemens AG - * Gerhard.Wichert@pdb.siemens.de - * - * - * Redesigned the x86 32-bit VM architecture to deal with - * up to 16 Terrabyte physical memory. With current x86 CPUs - * we now support up to 64 Gigabytes physical RAM. - * - * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> - * - * Reworked for PowerPC by various contributors. Moved from - * highmem.h by Benjamin Herrenschmidt (c) 2009 IBM Corp. - */ - -#include <linux/highmem.h> -#include <linux/module.h> - -void *kmap_atomic_high_prot(struct page *page, pgprot_t prot) -{ - unsigned long vaddr; - int idx, type; - - type = kmap_atomic_idx_push(); - idx = type + KM_TYPE_NR*smp_processor_id(); - vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); - WARN_ON(IS_ENABLED(CONFIG_DEBUG_HIGHMEM) && !pte_none(*(kmap_pte - idx))); - __set_pte_at(&init_mm, vaddr, kmap_pte-idx, mk_pte(page, prot), 1); - local_flush_tlb_page(NULL, vaddr); - - return (void*) vaddr; -} -EXPORT_SYMBOL(kmap_atomic_high_prot); - -void kunmap_atomic_high(void *kvaddr) -{ - unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK; - - if (vaddr < __fix_to_virt(FIX_KMAP_END)) - return; - - if (IS_ENABLED(CONFIG_DEBUG_HIGHMEM)) { - int type = kmap_atomic_idx(); - unsigned int idx; - - idx = type + KM_TYPE_NR * smp_processor_id(); - WARN_ON(vaddr != __fix_to_virt(FIX_KMAP_BEGIN + idx)); - - /* - * force other mappings to Oops if they'll try to access - * this pte without first remap it - */ - pte_clear(&init_mm, vaddr, kmap_pte-idx); - local_flush_tlb_page(NULL, vaddr); - } - - kmap_atomic_idx_pop(); -} -EXPORT_SYMBOL(kunmap_atomic_high); @ arch/powerpc/mm/mem.c:65 @ unsigned long long memory_limit; bool init_mem_is_free; -#ifdef CONFIG_HIGHMEM -pte_t *kmap_pte; -EXPORT_SYMBOL(kmap_pte); -#endif - pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot) { @ arch/powerpc/mm/mem.c:234 @ void __init paging_init(void) map_kernel_page(PKMAP_BASE, 0, __pgprot(0)); /* XXX gross */ pkmap_page_table = virt_to_kpte(PKMAP_BASE); - - kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN)); #endif /* CONFIG_HIGHMEM */ printk(KERN_DEBUG "Top of RAM: 0x%llx, Total RAM: 0x%llx\n", @ arch/powerpc/platforms/powernv/opal-kmsg.c:23 @ * message, it just ensures that OPAL completely flushes the console buffer. */ static void kmsg_dump_opal_console_flush(struct kmsg_dumper *dumper, - enum kmsg_dump_reason reason) + enum kmsg_dump_reason reason, + struct kmsg_dumper_iter *iter) { /* * Outside of a panic context the pollers will continue to run, @ arch/powerpc/platforms/pseries/iommu.c:27 @ #include <linux/of.h> #include <linux/iommu.h> #include <linux/rculist.h> +#include <linux/local_lock.h> #include <asm/io.h> #include <asm/prom.h> #include <asm/rtas.h> @ arch/powerpc/platforms/pseries/iommu.c:194 @ static int tce_build_pSeriesLP(unsigned long liobn, long tcenum, long tceshift, return ret; } -static DEFINE_PER_CPU(__be64 *, tce_page); +struct tce_page { + __be64 * page; + local_lock_t lock; +}; +static DEFINE_PER_CPU(struct tce_page, tce_page) = { + .lock = INIT_LOCAL_LOCK(lock), +}; static int tce_buildmulti_pSeriesLP(struct iommu_table *tbl, long tcenum, long npages, unsigned long uaddr, @ arch/powerpc/platforms/pseries/iommu.c:222 @ static int tce_buildmulti_pSeriesLP(struct iommu_table *tbl, long tcenum, direction, attrs); } - local_irq_save(flags); /* to protect tcep and the page behind it */ + /* to protect tcep and the page behind it */ + local_lock_irqsave(&tce_page.lock, flags); - tcep = __this_cpu_read(tce_page); + tcep = __this_cpu_read(tce_page.page); /* This is safe to do since interrupts are off when we're called * from iommu_alloc{,_sg}() @ arch/powerpc/platforms/pseries/iommu.c:234 @ static int tce_buildmulti_pSeriesLP(struct iommu_table *tbl, long tcenum, tcep = (__be64 *)__get_free_page(GFP_ATOMIC); /* If allocation fails, fall back to the loop implementation */ if (!tcep) { - local_irq_restore(flags); + local_unlock_irqrestore(&tce_page.lock, flags); return tce_build_pSeriesLP(tbl->it_index, tcenum, tbl->it_page_shift, npages, uaddr, direction, attrs); } - __this_cpu_write(tce_page, tcep); + __this_cpu_write(tce_page.page, tcep); } rpn = __pa(uaddr) >> TCE_SHIFT; @ arch/powerpc/platforms/pseries/iommu.c:269 @ static int tce_buildmulti_pSeriesLP(struct iommu_table *tbl, long tcenum, tcenum += limit; } while (npages > 0 && !rc); - local_irq_restore(flags); + local_unlock_irqrestore(&tce_page.lock, flags); if (unlikely(rc == H_NOT_ENOUGH_RESOURCES)) { ret = (int)rc; @ arch/powerpc/platforms/pseries/iommu.c:440 @ static int tce_setrange_multi_pSeriesLP(unsigned long start_pfn, DMA_BIDIRECTIONAL, 0); } - local_irq_disable(); /* to protect tcep and the page behind it */ - tcep = __this_cpu_read(tce_page); + /* to protect tcep and the page behind it */ + local_lock_irq(&tce_page.lock); + tcep = __this_cpu_read(tce_page.page); if (!tcep) { tcep = (__be64 *)__get_free_page(GFP_ATOMIC); if (!tcep) { - local_irq_enable(); + local_unlock_irq(&tce_page.lock); return -ENOMEM; } - __this_cpu_write(tce_page, tcep); + __this_cpu_write(tce_page.page, tcep); } proto_tce = TCE_PCI_READ | TCE_PCI_WRITE; @ arch/powerpc/platforms/pseries/iommu.c:493 @ static int tce_setrange_multi_pSeriesLP(unsigned long start_pfn, /* error cleanup: caller will clear whole range */ - local_irq_enable(); + local_unlock_irq(&tce_page.lock); return rc; } @ arch/powerpc/xmon/xmon.c:3008 @ print_address(unsigned long addr) static void dump_log_buf(void) { - struct kmsg_dumper dumper = { .active = 1 }; + struct kmsg_dumper_iter iter = { .active = 1 }; unsigned char buf[128]; size_t len; @ arch/powerpc/xmon/xmon.c:3020 @ dump_log_buf(void) catch_memory_errors = 1; sync(); - kmsg_dump_rewind_nolock(&dumper); + kmsg_dump_rewind(&iter); xmon_start_pagination(); - while (kmsg_dump_get_line_nolock(&dumper, false, buf, sizeof(buf), &len)) { + while (kmsg_dump_get_line(&iter, false, buf, sizeof(buf), &len)) { buf[len] = '\0'; printf("%s", buf); } @ arch/s390/Kconfig:186 @ config S390 select HAVE_RSEQ select HAVE_SYSCALL_TRACEPOINTS select HAVE_VIRT_CPU_ACCOUNTING + select HAVE_VIRT_CPU_ACCOUNTING_IDLE select IOMMU_HELPER if PCI select IOMMU_SUPPORT if PCI select MODULES_USE_ELF_RELA @ arch/s390/include/asm/spinlock_types.h:5 @ #ifndef __ASM_SPINLOCK_TYPES_H #define __ASM_SPINLOCK_TYPES_H -#ifndef __LINUX_SPINLOCK_TYPES_H -# error "please don't include this file directly" -#endif - typedef struct { int lock; } __attribute__ ((aligned (4))) arch_spinlock_t; @ arch/s390/include/asm/vtime.h:5 @ #ifndef _S390_VTIME_H #define _S390_VTIME_H -#define __ARCH_HAS_VTIME_ACCOUNT #define __ARCH_HAS_VTIME_TASK_SWITCH #endif /* _S390_VTIME_H */ @ arch/s390/kernel/vtime.c:226 @ void vtime_flush(struct task_struct *tsk) S390_lowcore.avg_steal_timer = avg_steal; } +static u64 vtime_delta(void) +{ + u64 timer = S390_lowcore.last_update_timer; + + S390_lowcore.last_update_timer = get_vtimer(); + + return timer - S390_lowcore.last_update_timer; +} + /* * Update process times based on virtual cpu times stored by entry.S * to the lowcore fields user_timer, system_timer & steal_clock. */ -void vtime_account_irq_enter(struct task_struct *tsk) +void vtime_account_kernel(struct task_struct *tsk) { - u64 timer; - - timer = S390_lowcore.last_update_timer; - S390_lowcore.last_update_timer = get_vtimer(); - timer -= S390_lowcore.last_update_timer; + u64 delta = vtime_delta(); - if ((tsk->flags & PF_VCPU) && (irq_count() == 0)) - S390_lowcore.guest_timer += timer; - else if (hardirq_count()) - S390_lowcore.hardirq_timer += timer; - else if (in_serving_softirq()) - S390_lowcore.softirq_timer += timer; + if (tsk->flags & PF_VCPU) + S390_lowcore.guest_timer += delta; else - S390_lowcore.system_timer += timer; + S390_lowcore.system_timer += delta; - virt_timer_forward(timer); + virt_timer_forward(delta); } -EXPORT_SYMBOL_GPL(vtime_account_irq_enter); - -void vtime_account_kernel(struct task_struct *tsk) -__attribute__((alias("vtime_account_irq_enter"))); EXPORT_SYMBOL_GPL(vtime_account_kernel); +void vtime_account_softirq(struct task_struct *tsk) +{ + u64 delta = vtime_delta(); + + S390_lowcore.softirq_timer += delta; + + virt_timer_forward(delta); +} + +void vtime_account_hardirq(struct task_struct *tsk) +{ + u64 delta = vtime_delta(); + + S390_lowcore.hardirq_timer += delta; + + virt_timer_forward(delta); +} + /* * Sorted add to a list. List is linear searched until first bigger * element is found. @ arch/sh/include/asm/fixmap.h:16 @ #include <linux/kernel.h> #include <linux/threads.h> #include <asm/page.h> -#ifdef CONFIG_HIGHMEM -#include <asm/kmap_types.h> -#endif /* * Here we define all the compile-time 'special' virtual @ arch/sh/include/asm/fixmap.h:53 @ enum fixed_addresses { FIX_CMAP_BEGIN, FIX_CMAP_END = FIX_CMAP_BEGIN + (FIX_N_COLOURS * NR_CPUS) - 1, -#ifdef CONFIG_HIGHMEM - FIX_KMAP_BEGIN, /* reserved pte's for temporary kernel mappings */ - FIX_KMAP_END = FIX_KMAP_BEGIN + (KM_TYPE_NR * NR_CPUS) - 1, -#endif - #ifdef CONFIG_IOREMAP_FIXED /* * FIX_IOREMAP entries are useful for mapping physical address @ arch/sh/include/asm/hardirq.h:5 @ #ifndef __ASM_SH_HARDIRQ_H #define __ASM_SH_HARDIRQ_H -#include <linux/threads.h> -#include <linux/irq.h> - -typedef struct { - unsigned int __softirq_pending; - unsigned int __nmi_count; /* arch dependent */ -} ____cacheline_aligned irq_cpustat_t; - -#include <linux/irq_cpustat.h> /* Standard mappings for irq_cpustat_t above */ - extern void ack_bad_irq(unsigned int irq); +#define ack_bad_irq ack_bad_irq +#define ARCH_WANTS_NMI_IRQSTAT + +#include <asm-generic/hardirq.h> #endif /* __ASM_SH_HARDIRQ_H */ @ arch/sh/include/asm/kmap_types.h:1 @ -/* SPDX-License-Identifier: GPL-2.0 */ -#ifndef __SH_KMAP_TYPES_H -#define __SH_KMAP_TYPES_H - -/* Dummy header just to define km_type. */ - -#ifdef CONFIG_DEBUG_HIGHMEM -#define __WITH_KM_FENCE -#endif - -#include <asm-generic/kmap_types.h> - -#undef __WITH_KM_FENCE - -#endif @ arch/sh/include/asm/spinlock_types.h:5 @ #ifndef __ASM_SH_SPINLOCK_TYPES_H #define __ASM_SH_SPINLOCK_TYPES_H -#ifndef __LINUX_SPINLOCK_TYPES_H -# error "please don't include this file directly" -#endif - typedef struct { volatile unsigned int lock; } arch_spinlock_t; @ arch/sh/kernel/irq.c:47 @ int arch_show_interrupts(struct seq_file *p, int prec) seq_printf(p, "%*s: ", prec, "NMI"); for_each_online_cpu(j) - seq_printf(p, "%10u ", nmi_count(j)); + seq_printf(p, "%10u ", per_cpu(irq_stat.__nmi_count, j)); seq_printf(p, " Non-maskable interrupts\n"); seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count)); @ arch/sh/kernel/irq.c:151 @ void irq_ctx_exit(int cpu) hardirq_ctx[cpu] = NULL; } +#ifndef CONFIG_PREEMPT_RT void do_softirq_own_stack(void) { struct thread_info *curctx; @ arch/sh/kernel/irq.c:179 @ void do_softirq_own_stack(void) "r5", "r6", "r7", "r8", "r9", "r15", "t", "pr" ); } +#endif #else static inline void handle_one_irq(unsigned int irq) { @ arch/sh/kernel/traps.c:189 @ BUILD_TRAP_HANDLER(nmi) arch_ftrace_nmi_enter(); nmi_enter(); - nmi_count(cpu)++; + this_cpu_inc(irq_stat.__nmi_count); switch (notify_die(DIE_NMI, "NMI", regs, 0, vec & 0xff, SIGINT)) { case NOTIFY_OK: @ arch/sh/mm/init.c:365 @ void __init mem_init(void) mem_init_print_info(NULL); pr_info("virtual kernel memory layout:\n" " fixmap : 0x%08lx - 0x%08lx (%4ld kB)\n" -#ifdef CONFIG_HIGHMEM - " pkmap : 0x%08lx - 0x%08lx (%4ld kB)\n" -#endif " vmalloc : 0x%08lx - 0x%08lx (%4ld MB)\n" " lowmem : 0x%08lx - 0x%08lx (%4ld MB) (cached)\n" #ifdef CONFIG_UNCACHED_MAPPING @ arch/sh/mm/init.c:376 @ void __init mem_init(void) FIXADDR_START, FIXADDR_TOP, (FIXADDR_TOP - FIXADDR_START) >> 10, -#ifdef CONFIG_HIGHMEM - PKMAP_BASE, PKMAP_BASE+LAST_PKMAP*PAGE_SIZE, - (LAST_PKMAP*PAGE_SIZE) >> 10, -#endif - (unsigned long)VMALLOC_START, VMALLOC_END, (VMALLOC_END - VMALLOC_START) >> 20, @ arch/sparc/Kconfig:142 @ config MMU config HIGHMEM bool default y if SPARC32 + select KMAP_LOCAL config ZONE_DMA bool @ arch/sparc/include/asm/highmem.h:27 @ #include <linux/interrupt.h> #include <linux/pgtable.h> #include <asm/vaddrs.h> -#include <asm/kmap_types.h> #include <asm/pgtsrmmu.h> /* declarations for highmem.c */ @ arch/sparc/include/asm/highmem.h:35 @ extern unsigned long highstart_pfn, highend_pfn; #define kmap_prot __pgprot(SRMMU_ET_PTE | SRMMU_PRIV | SRMMU_CACHE) extern pte_t *pkmap_page_table; -void kmap_init(void) __init; - /* * Right now we initialize only a single pte table. It can be extended * easily, subsequent pte tables have to be allocated in one physical @ arch/sparc/include/asm/highmem.h:53 @ void kmap_init(void) __init; #define flush_cache_kmaps() flush_cache_all() +/* FIXME: Use __flush_tlb_one(vaddr) instead of flush_cache_all() -- Anton */ +#define arch_kmap_local_post_map(vaddr, pteval) flush_cache_all() +#define arch_kmap_local_post_unmap(vaddr) flush_cache_all() + + #endif /* __KERNEL__ */ #endif /* _ASM_HIGHMEM_H */ @ arch/sparc/include/asm/kmap_types.h:1 @ -/* SPDX-License-Identifier: GPL-2.0 */ -#ifndef _ASM_KMAP_TYPES_H -#define _ASM_KMAP_TYPES_H - -/* Dummy header just to define km_type. None of this - * is actually used on sparc. -DaveM - */ - -#include <asm-generic/kmap_types.h> - -#endif @ arch/sparc/include/asm/vaddrs.h:35 @ #define SRMMU_NOCACHE_ALCRATIO 64 /* 256 pages per 64MB of system RAM */ #ifndef __ASSEMBLY__ -#include <asm/kmap_types.h> +#include <asm/kmap_size.h> enum fixed_addresses { FIX_HOLE, #ifdef CONFIG_HIGHMEM FIX_KMAP_BEGIN, - FIX_KMAP_END = (KM_TYPE_NR * NR_CPUS), + FIX_KMAP_END = (KM_MAX_IDX * NR_CPUS), #endif __end_of_fixed_addresses }; @ arch/sparc/kernel/irq_64.c:857 @ void __irq_entry handler_irq(int pil, struct pt_regs *regs) set_irq_regs(old_regs); } +#ifndef CONFIG_PREEMPT_RT void do_softirq_own_stack(void) { void *orig_sp, *sp = softirq_stack[smp_processor_id()]; @ arch/sparc/kernel/irq_64.c:872 @ void do_softirq_own_stack(void) __asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp)); } +#endif #ifdef CONFIG_HOTPLUG_CPU void fixup_irqs(void) @ arch/sparc/mm/Makefile:18 @ obj-$(CONFIG_SPARC32) += leon_mm.o # Only used by sparc64 obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o - -# Only used by sparc32 -obj-$(CONFIG_HIGHMEM) += highmem.o @ arch/sparc/mm/highmem.c:1 @ -// SPDX-License-Identifier: GPL-2.0 -/* - * highmem.c: virtual kernel memory mappings for high memory - * - * Provides kernel-static versions of atomic kmap functions originally - * found as inlines in include/asm-sparc/highmem.h. These became - * needed as kmap_atomic() and kunmap_atomic() started getting - * called from within modules. - * -- Tomas Szepe <szepe@pinerecords.com>, September 2002 - * - * But kmap_atomic() and kunmap_atomic() cannot be inlined in - * modules because they are loaded with btfixup-ped functions. - */ - -/* - * The use of kmap_atomic/kunmap_atomic is discouraged - kmap/kunmap - * gives a more generic (and caching) interface. But kmap_atomic can - * be used in IRQ contexts, so in some (very limited) cases we need it. - * - * XXX This is an old text. Actually, it's good to use atomic kmaps, - * provided you remember that they are atomic and not try to sleep - * with a kmap taken, much like a spinlock. Non-atomic kmaps are - * shared by CPUs, and so precious, and establishing them requires IPI. - * Atomic kmaps are lightweight and we may have NCPUS more of them. - */ -#include <linux/highmem.h> -#include <linux/export.h> -#include <linux/mm.h> - -#include <asm/cacheflush.h> -#include <asm/tlbflush.h> -#include <asm/vaddrs.h> - -static pte_t *kmap_pte; - -void __init kmap_init(void) -{ - unsigned long address = __fix_to_virt(FIX_KMAP_BEGIN); - - /* cache the first kmap pte */ - kmap_pte = virt_to_kpte(address); -} - -void *kmap_atomic_high_prot(struct page *page, pgprot_t prot) -{ - unsigned long vaddr; - long idx, type; - - type = kmap_atomic_idx_push(); - idx = type + KM_TYPE_NR*smp_processor_id(); - vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); - -/* XXX Fix - Anton */ -#if 0 - __flush_cache_one(vaddr); -#else - flush_cache_all(); -#endif - -#ifdef CONFIG_DEBUG_HIGHMEM - BUG_ON(!pte_none(*(kmap_pte-idx))); -#endif - set_pte(kmap_pte-idx, mk_pte(page, prot)); -/* XXX Fix - Anton */ -#if 0 - __flush_tlb_one(vaddr); -#else - flush_tlb_all(); -#endif - - return (void*) vaddr; -} -EXPORT_SYMBOL(kmap_atomic_high_prot); - -void kunmap_atomic_high(void *kvaddr) -{ - unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK; - int type; - - if (vaddr < FIXADDR_START) - return; - - type = kmap_atomic_idx(); - -#ifdef CONFIG_DEBUG_HIGHMEM - { - unsigned long idx; - - idx = type + KM_TYPE_NR * smp_processor_id(); - BUG_ON(vaddr != __fix_to_virt(FIX_KMAP_BEGIN+idx)); - - /* XXX Fix - Anton */ -#if 0 - __flush_cache_one(vaddr); -#else - flush_cache_all(); -#endif - - /* - * force other mappings to Oops if they'll try to access - * this pte without first remap it - */ - pte_clear(&init_mm, vaddr, kmap_pte-idx); - /* XXX Fix - Anton */ -#if 0 - __flush_tlb_one(vaddr); -#else - flush_tlb_all(); -#endif - } -#endif - - kmap_atomic_idx_pop(); -} -EXPORT_SYMBOL(kunmap_atomic_high); @ arch/sparc/mm/srmmu.c:974 @ void __init srmmu_paging_init(void) sparc_context_init(num_contexts); - kmap_init(); - { unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 }; @ arch/um/include/asm/fixmap.h:6 @ #define __UM_FIXMAP_H #include <asm/processor.h> -#include <asm/kmap_types.h> #include <asm/archparam.h> #include <asm/page.h> #include <linux/threads.h> @ arch/um/include/asm/hardirq.h:5 @ #ifndef __ASM_UM_HARDIRQ_H #define __ASM_UM_HARDIRQ_H -#include <linux/cache.h> -#include <linux/threads.h> - -typedef struct { - unsigned int __softirq_pending; -} ____cacheline_aligned irq_cpustat_t; - -#include <linux/irq_cpustat.h> /* Standard mappings for irq_cpustat_t above */ -#include <linux/irq.h> - -#ifndef ack_bad_irq -static inline void ack_bad_irq(unsigned int irq) -{ - printk(KERN_CRIT "unexpected IRQ trap at vector %02x\n", irq); -} -#endif +#include <asm-generic/hardirq.h> #define __ARCH_IRQ_EXIT_IRQS_DISABLED 1 @ arch/um/include/asm/kmap_types.h:1 @ -/* SPDX-License-Identifier: GPL-2.0 */ -/* - * Copyright (C) 2002 Jeff Dike (jdike@karaya.com) - */ - -#ifndef __UM_KMAP_TYPES_H -#define __UM_KMAP_TYPES_H - -/* No more #include "asm/arch/kmap_types.h" ! */ - -#define KM_TYPE_NR 14 - -#endif @ arch/um/kernel/kmsg_dump.c:4 @ // SPDX-License-Identifier: GPL-2.0 #include <linux/kmsg_dump.h> +#include <linux/spinlock.h> #include <linux/console.h> #include <shared/init.h> #include <shared/kern.h> #include <os.h> static void kmsg_dumper_stdout(struct kmsg_dumper *dumper, - enum kmsg_dump_reason reason) + enum kmsg_dump_reason reason, + struct kmsg_dumper_iter *iter) { + static DEFINE_SPINLOCK(lock); static char line[1024]; struct console *con; + unsigned long flags; size_t len = 0; /* only dump kmsg when no console is available */ @ arch/um/kernel/kmsg_dump.c:31 @ static void kmsg_dumper_stdout(struct kmsg_dumper *dumper, if (con) return; + if (!spin_trylock_irqsave(&lock, flags)) + return; + printf("kmsg_dump:\n"); - while (kmsg_dump_get_line(dumper, true, line, sizeof(line), &len)) { + while (kmsg_dump_get_line(iter, true, line, sizeof(line), &len)) { line[len] = '\0'; printf("%s", line); } + + spin_unlock_irqrestore(&lock, flags); } static struct kmsg_dumper kmsg_dumper = { @ arch/x86/Kconfig:18 @ config X86_32 select CLKSRC_I8253 select CLONE_BACKWARDS select HAVE_DEBUG_STACKOVERFLOW + select KMAP_LOCAL select MODULES_USE_ELF_REL select OLD_SIGACTION select GENERIC_VDSO_32 @ arch/x86/Kconfig:97 @ config X86 select ARCH_SUPPORTS_ACPI select ARCH_SUPPORTS_ATOMIC_RMW select ARCH_SUPPORTS_NUMA_BALANCING if X86_64 + select ARCH_SUPPORTS_RT select ARCH_USE_BUILTIN_BSWAP select ARCH_USE_QUEUED_RWLOCKS select ARCH_USE_QUEUED_SPINLOCKS @ arch/x86/Kconfig:215 @ config X86 select HAVE_PCI select HAVE_PERF_REGS select HAVE_PERF_USER_STACK_DUMP + select HAVE_PREEMPT_LAZY select MMU_GATHER_RCU_TABLE_FREE if PARAVIRT select HAVE_POSIX_CPU_TIMERS_TASK_WORK select HAVE_REGS_AND_STACK_ACCESS_API @ arch/x86/crypto/aesni-intel_glue.c:382 @ static int ecb_encrypt(struct skcipher_request *req) err = skcipher_walk_virt(&walk, req, true); - kernel_fpu_begin(); while ((nbytes = walk.nbytes)) { + kernel_fpu_begin(); aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK); + kernel_fpu_end(); nbytes &= AES_BLOCK_SIZE - 1; err = skcipher_walk_done(&walk, nbytes); } - kernel_fpu_end(); return err; } @ arch/x86/crypto/aesni-intel_glue.c:404 @ static int ecb_decrypt(struct skcipher_request *req) err = skcipher_walk_virt(&walk, req, true); - kernel_fpu_begin(); while ((nbytes = walk.nbytes)) { + kernel_fpu_begin(); aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK); + kernel_fpu_end(); nbytes &= AES_BLOCK_SIZE - 1; err = skcipher_walk_done(&walk, nbytes); } - kernel_fpu_end(); return err; } @ arch/x86/crypto/aesni-intel_glue.c:426 @ static int cbc_encrypt(struct skcipher_request *req) err = skcipher_walk_virt(&walk, req, true); - kernel_fpu_begin(); while ((nbytes = walk.nbytes)) { + kernel_fpu_begin(); aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK, walk.iv); + kernel_fpu_end(); nbytes &= AES_BLOCK_SIZE - 1; err = skcipher_walk_done(&walk, nbytes); } - kernel_fpu_end(); return err; } @ arch/x86/crypto/aesni-intel_glue.c:448 @ static int cbc_decrypt(struct skcipher_request *req) err = skcipher_walk_virt(&walk, req, true); - kernel_fpu_begin(); while ((nbytes = walk.nbytes)) { + kernel_fpu_begin(); aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK, walk.iv); + kernel_fpu_end(); nbytes &= AES_BLOCK_SIZE - 1; err = skcipher_walk_done(&walk, nbytes); } - kernel_fpu_end(); return err; } @ arch/x86/crypto/aesni-intel_glue.c:503 @ static int ctr_crypt(struct skcipher_request *req) err = skcipher_walk_virt(&walk, req, true); - kernel_fpu_begin(); while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) { + kernel_fpu_begin(); aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK, walk.iv); + kernel_fpu_end(); nbytes &= AES_BLOCK_SIZE - 1; err = skcipher_walk_done(&walk, nbytes); } if (walk.nbytes) { + kernel_fpu_begin(); ctr_crypt_final(ctx, &walk); + kernel_fpu_end(); err = skcipher_walk_done(&walk, 0); } - kernel_fpu_end(); return err; } @ arch/x86/crypto/cast5_avx_glue.c:49 @ static inline void cast5_fpu_end(bool fpu_enabled) static int ecb_crypt(struct skcipher_request *req, bool enc) { - bool fpu_enabled = false; + bool fpu_enabled; struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct cast5_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; @ arch/x86/crypto/cast5_avx_glue.c:64 @ static int ecb_crypt(struct skcipher_request *req, bool enc) u8 *wsrc = walk.src.virt.addr; u8 *wdst = walk.dst.virt.addr; - fpu_enabled = cast5_fpu_begin(fpu_enabled, &walk, nbytes); + fpu_enabled = cast5_fpu_begin(false, &walk, nbytes); /* Process multi-block batch */ if (nbytes >= bsize * CAST5_PARALLEL_BLOCKS) { @ arch/x86/crypto/cast5_avx_glue.c:93 @ static int ecb_crypt(struct skcipher_request *req, bool enc) } while (nbytes >= bsize); done: + cast5_fpu_end(fpu_enabled); err = skcipher_walk_done(&walk, nbytes); } - - cast5_fpu_end(fpu_enabled); return err; } @ arch/x86/crypto/cast5_avx_glue.c:199 @ static int cbc_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct cast5_ctx *ctx = crypto_skcipher_ctx(tfm); - bool fpu_enabled = false; + bool fpu_enabled; struct skcipher_walk walk; unsigned int nbytes; int err; @ arch/x86/crypto/cast5_avx_glue.c:207 @ static int cbc_decrypt(struct skcipher_request *req) err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes)) { - fpu_enabled = cast5_fpu_begin(fpu_enabled, &walk, nbytes); + fpu_enabled = cast5_fpu_begin(false, &walk, nbytes); nbytes = __cbc_decrypt(ctx, &walk); + cast5_fpu_end(fpu_enabled); err = skcipher_walk_done(&walk, nbytes); } - - cast5_fpu_end(fpu_enabled); return err; } @ arch/x86/crypto/cast5_avx_glue.c:278 @ static int ctr_crypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct cast5_ctx *ctx = crypto_skcipher_ctx(tfm); - bool fpu_enabled = false; + bool fpu_enabled; struct skcipher_walk walk; unsigned int nbytes; int err; @ arch/x86/crypto/cast5_avx_glue.c:286 @ static int ctr_crypt(struct skcipher_request *req) err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) >= CAST5_BLOCK_SIZE) { - fpu_enabled = cast5_fpu_begin(fpu_enabled, &walk, nbytes); + fpu_enabled = cast5_fpu_begin(false, &walk, nbytes); nbytes = __ctr_crypt(&walk, ctx); + cast5_fpu_end(fpu_enabled); err = skcipher_walk_done(&walk, nbytes); } - cast5_fpu_end(fpu_enabled); - if (walk.nbytes) { ctr_crypt_final(&walk, ctx); err = skcipher_walk_done(&walk, 0); @ arch/x86/crypto/glue_helper.c:27 @ int glue_ecb_req_128bit(const struct common_glue_ctx *gctx, void *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); const unsigned int bsize = 128 / 8; struct skcipher_walk walk; - bool fpu_enabled = false; + bool fpu_enabled; unsigned int nbytes; int err; @ arch/x86/crypto/glue_helper.c:40 @ int glue_ecb_req_128bit(const struct common_glue_ctx *gctx, unsigned int i; fpu_enabled = glue_fpu_begin(bsize, gctx->fpu_blocks_limit, - &walk, fpu_enabled, nbytes); + &walk, false, nbytes); for (i = 0; i < gctx->num_funcs; i++) { func_bytes = bsize * gctx->funcs[i].num_blocks; @ arch/x86/crypto/glue_helper.c:58 @ int glue_ecb_req_128bit(const struct common_glue_ctx *gctx, if (nbytes < bsize) break; } + glue_fpu_end(fpu_enabled); err = skcipher_walk_done(&walk, nbytes); } - - glue_fpu_end(fpu_enabled); return err; } EXPORT_SYMBOL_GPL(glue_ecb_req_128bit); @ arch/x86/crypto/glue_helper.c:103 @ int glue_cbc_decrypt_req_128bit(const struct common_glue_ctx *gctx, void *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); const unsigned int bsize = 128 / 8; struct skcipher_walk walk; - bool fpu_enabled = false; + bool fpu_enabled; unsigned int nbytes; int err; @ arch/x86/crypto/glue_helper.c:117 @ int glue_cbc_decrypt_req_128bit(const struct common_glue_ctx *gctx, u128 last_iv; fpu_enabled = glue_fpu_begin(bsize, gctx->fpu_blocks_limit, - &walk, fpu_enabled, nbytes); + &walk, false, nbytes); /* Start of the last block. */ src += nbytes / bsize - 1; dst += nbytes / bsize - 1; @ arch/x86/crypto/glue_helper.c:150 @ int glue_cbc_decrypt_req_128bit(const struct common_glue_ctx *gctx, done: u128_xor(dst, dst, (u128 *)walk.iv); *(u128 *)walk.iv = last_iv; + glue_fpu_end(fpu_enabled); err = skcipher_walk_done(&walk, nbytes); } - glue_fpu_end(fpu_enabled); return err; } EXPORT_SYMBOL_GPL(glue_cbc_decrypt_req_128bit); @ arch/x86/crypto/glue_helper.c:164 @ int glue_ctr_req_128bit(const struct common_glue_ctx *gctx, void *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); const unsigned int bsize = 128 / 8; struct skcipher_walk walk; - bool fpu_enabled = false; + bool fpu_enabled; unsigned int nbytes; int err; @ arch/x86/crypto/glue_helper.c:178 @ int glue_ctr_req_128bit(const struct common_glue_ctx *gctx, le128 ctrblk; fpu_enabled = glue_fpu_begin(bsize, gctx->fpu_blocks_limit, - &walk, fpu_enabled, nbytes); + &walk, false, nbytes); be128_to_le128(&ctrblk, (be128 *)walk.iv); @ arch/x86/crypto/glue_helper.c:204 @ int glue_ctr_req_128bit(const struct common_glue_ctx *gctx, } le128_to_be128((be128 *)walk.iv, &ctrblk); + glue_fpu_end(fpu_enabled); err = skcipher_walk_done(&walk, nbytes); } - glue_fpu_end(fpu_enabled); - if (nbytes) { le128 ctrblk; u128 tmp; @ arch/x86/crypto/glue_helper.c:307 @ int glue_xts_req_128bit(const struct common_glue_ctx *gctx, tweak_fn(tweak_ctx, walk.iv, walk.iv); while (nbytes) { + fpu_enabled = glue_fpu_begin(bsize, gctx->fpu_blocks_limit, + &walk, fpu_enabled, + nbytes < bsize ? bsize : nbytes); nbytes = __glue_xts_req_128bit(gctx, crypt_ctx, &walk); + glue_fpu_end(fpu_enabled); + fpu_enabled = false; + err = skcipher_walk_done(&walk, nbytes); nbytes = walk.nbytes; } @ arch/x86/include/asm/fixmap.h:34 @ #include <asm/pgtable_types.h> #ifdef CONFIG_X86_32 #include <linux/threads.h> -#include <asm/kmap_types.h> +#include <asm/kmap_size.h> #else #include <uapi/asm/vsyscall.h> #endif @ arch/x86/include/asm/fixmap.h:97 @ enum fixed_addresses { #endif #ifdef CONFIG_X86_32 FIX_KMAP_BEGIN, /* reserved pte's for temporary kernel mappings */ - FIX_KMAP_END = FIX_KMAP_BEGIN+(KM_TYPE_NR*NR_CPUS)-1, + FIX_KMAP_END = FIX_KMAP_BEGIN + (KM_MAX_IDX * NR_CPUS) - 1, #ifdef CONFIG_PCI_MMCONFIG FIX_PCIE_MCFG, #endif @ arch/x86/include/asm/fixmap.h:154 @ extern void reserve_top_address(unsigned long reserve); extern int fixmaps_set; -extern pte_t *kmap_pte; extern pte_t *pkmap_page_table; void __native_set_fixmap(enum fixed_addresses idx, pte_t pte); @ arch/x86/include/asm/fpu/api.h:31 @ extern void kernel_fpu_begin_mask(unsigned int kfpu_mask); extern void kernel_fpu_end(void); extern bool irq_fpu_usable(void); extern void fpregs_mark_activate(void); +extern void kernel_fpu_resched(void); /* Code that is unaware of kernel_fpu_begin_mask() can use this */ static inline void kernel_fpu_begin(void) @ arch/x86/include/asm/fpu/api.h:44 @ static inline void kernel_fpu_begin(void) * A context switch will (and softirq might) save CPU's FPU registers to * fpu->state and set TIF_NEED_FPU_LOAD leaving CPU's FPU registers in * a random state. + * + * local_bh_disable() protects against both preemption and soft interrupts + * on !RT kernels. + * + * On RT kernels local_bh_disable() is not sufficient because it only + * serializes soft interrupt related sections via a local lock, but stays + * preemptible. Disabling preemption is the right choice here as bottom + * half processing is always in thread context on RT kernels so it + * implicitly prevents bottom half processing as well. + * + * Disabling preemption also serializes against kernel_fpu_begin(). */ static inline void fpregs_lock(void) { - preempt_disable(); - local_bh_disable(); + if (!IS_ENABLED(CONFIG_PREEMPT_RT)) + local_bh_disable(); + else + preempt_disable(); } static inline void fpregs_unlock(void) { - local_bh_enable(); - preempt_enable(); + if (!IS_ENABLED(CONFIG_PREEMPT_RT)) + local_bh_enable(); + else + preempt_enable(); } #ifdef CONFIG_X86_DEBUG_FPU @ arch/x86/include/asm/highmem.h:26 @ #include <linux/interrupt.h> #include <linux/threads.h> -#include <asm/kmap_types.h> #include <asm/tlbflush.h> #include <asm/paravirt.h> #include <asm/fixmap.h> @ arch/x86/include/asm/highmem.h:60 @ extern unsigned long highstart_pfn, highend_pfn; #define PKMAP_NR(virt) ((virt-PKMAP_BASE) >> PAGE_SHIFT) #define PKMAP_ADDR(nr) (PKMAP_BASE + ((nr) << PAGE_SHIFT)) -void *kmap_atomic_pfn(unsigned long pfn); -void *kmap_atomic_prot_pfn(unsigned long pfn, pgprot_t prot); - #define flush_cache_kmaps() do { } while (0) +#define arch_kmap_local_post_map(vaddr, pteval) \ + arch_flush_lazy_mmu_mode() + +#define arch_kmap_local_post_unmap(vaddr) \ + do { \ + flush_tlb_one_kernel((vaddr)); \ + arch_flush_lazy_mmu_mode(); \ + } while (0) + extern void add_highpages_with_active_regions(int nid, unsigned long start_pfn, unsigned long end_pfn); @ arch/x86/include/asm/iomap.h:12 @ #include <linux/fs.h> #include <linux/mm.h> #include <linux/uaccess.h> +#include <linux/highmem.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> -void __iomem * -iomap_atomic_prot_pfn(unsigned long pfn, pgprot_t prot); +void __iomem *__iomap_local_pfn_prot(unsigned long pfn, pgprot_t prot); -void -iounmap_atomic(void __iomem *kvaddr); +int iomap_create_wc(resource_size_t base, unsigned long size, pgprot_t *prot); -int -iomap_create_wc(resource_size_t base, unsigned long size, pgprot_t *prot); - -void -iomap_free(resource_size_t base, unsigned long size); +void iomap_free(resource_size_t base, unsigned long size); #endif /* _ASM_X86_IOMAP_H */ @ arch/x86/include/asm/kmap_types.h:1 @ -/* SPDX-License-Identifier: GPL-2.0 */ -#ifndef _ASM_X86_KMAP_TYPES_H -#define _ASM_X86_KMAP_TYPES_H - -#if defined(CONFIG_X86_32) && defined(CONFIG_DEBUG_HIGHMEM) -#define __WITH_KM_FENCE -#endif - -#include <asm-generic/kmap_types.h> - -#undef __WITH_KM_FENCE - -#endif /* _ASM_X86_KMAP_TYPES_H */ @ arch/x86/include/asm/paravirt_types.h:44 @ #ifndef __ASSEMBLY__ #include <asm/desc_defs.h> -#include <asm/kmap_types.h> #include <asm/pgtable_types.h> #include <asm/nospec-branch.h> @ arch/x86/include/asm/preempt.h:92 @ static __always_inline void __preempt_count_sub(int val) * a decrement which hits zero means we have no preempt_count and should * reschedule. */ -static __always_inline bool __preempt_count_dec_and_test(void) +static __always_inline bool ____preempt_count_dec_and_test(void) { return GEN_UNARY_RMWcc("decl", __preempt_count, e, __percpu_arg([var])); } +static __always_inline bool __preempt_count_dec_and_test(void) +{ + if (____preempt_count_dec_and_test()) + return true; +#ifdef CONFIG_PREEMPT_LAZY + if (preempt_count()) + return false; + if (current_thread_info()->preempt_lazy_count) + return false; + return test_thread_flag(TIF_NEED_RESCHED_LAZY); +#else + return false; +#endif +} + /* * Returns true when we need to resched and can (barring IRQ state). */ static __always_inline bool should_resched(int preempt_offset) { +#ifdef CONFIG_PREEMPT_LAZY + u32 tmp; + tmp = raw_cpu_read_4(__preempt_count); + if (tmp == preempt_offset) + return true; + + /* preempt count == 0 ? */ + tmp &= ~PREEMPT_NEED_RESCHED; + if (tmp != preempt_offset) + return false; + /* XXX PREEMPT_LOCK_OFFSET */ + if (current_thread_info()->preempt_lazy_count) + return false; + return test_thread_flag(TIF_NEED_RESCHED_LAZY); +#else return unlikely(raw_cpu_read_4(__preempt_count) == preempt_offset); +#endif } #ifdef CONFIG_PREEMPTION +#ifdef CONFIG_PREEMPT_RT + extern void preempt_schedule_lock(void); +#endif extern asmlinkage void preempt_schedule_thunk(void); # define __preempt_schedule() \ asm volatile ("call preempt_schedule_thunk" : ASM_CALL_CONSTRAINT) @ arch/x86/include/asm/signal.h:31 @ typedef struct { #define SA_IA32_ABI 0x02000000u #define SA_X32_ABI 0x01000000u +/* + * Because some traps use the IST stack, we must keep preemption + * disabled while calling do_trap(), but do_trap() may call + * force_sig_info() which will grab the signal spin_locks for the + * task, which in PREEMPT_RT are mutexes. By defining + * ARCH_RT_DELAYS_SIGNAL_SEND the force_sig_info() will set + * TIF_NOTIFY_RESUME and set up the signal to be sent on exit of the + * trap. + */ +#if defined(CONFIG_PREEMPT_RT) +#define ARCH_RT_DELAYS_SIGNAL_SEND +#endif + #ifndef CONFIG_COMPAT typedef sigset_t compat_sigset_t; #endif @ arch/x86/include/asm/stackprotector.h:68 @ */ static __always_inline void boot_init_stack_canary(void) { - u64 canary; + u64 canary = 0; u64 tsc; #ifdef CONFIG_X86_64 @ arch/x86/include/asm/stackprotector.h:79 @ static __always_inline void boot_init_stack_canary(void) * of randomness. The TSC only matters for very early init, * there it already has some randomness on most systems. Later * on during the bootup the random pool has true entropy too. + * For preempt-rt we need to weaken the randomness a bit, as + * we can't call into the random generator from atomic context + * due to locking constraints. We just leave canary + * uninitialized and use the TSC based randomness on top of it. */ +#ifndef CONFIG_PREEMPT_RT get_random_bytes(&canary, sizeof(canary)); +#endif tsc = rdtsc(); canary += tsc + (tsc << 32UL); canary &= CANARY_MASK; @ arch/x86/include/asm/thread_info.h:59 @ struct task_struct; struct thread_info { unsigned long flags; /* low level flags */ u32 status; /* thread synchronous flags */ + int preempt_lazy_count; /* 0 => lazy preemptable + <0 => BUG */ }; #define INIT_THREAD_INFO(tsk) \ { \ .flags = 0, \ + .preempt_lazy_count = 0, \ } #else /* !__ASSEMBLY__ */ #include <asm/asm-offsets.h> +#define GET_THREAD_INFO(reg) \ + _ASM_MOV PER_CPU_VAR(cpu_current_top_of_stack),reg ; \ + _ASM_SUB $(THREAD_SIZE),reg ; + #endif /* @ arch/x86/include/asm/thread_info.h:103 @ struct thread_info { #define TIF_NOTSC 16 /* TSC is not accessible in userland */ #define TIF_IA32 17 /* IA32 compatibility process */ #define TIF_SLD 18 /* Restore split lock detection on context switch */ +#define TIF_NEED_RESCHED_LAZY 19 /* lazy rescheduling necessary */ #define TIF_MEMDIE 20 /* is terminating due to OOM killer */ #define TIF_POLLING_NRFLAG 21 /* idle is polling for TIF_NEED_RESCHED */ #define TIF_IO_BITMAP 22 /* uses I/O bitmap */ @ arch/x86/include/asm/thread_info.h:133 @ struct thread_info { #define _TIF_NOTSC (1 << TIF_NOTSC) #define _TIF_IA32 (1 << TIF_IA32) #define _TIF_SLD (1 << TIF_SLD) +#define _TIF_NEED_RESCHED_LAZY (1 << TIF_NEED_RESCHED_LAZY) #define _TIF_POLLING_NRFLAG (1 << TIF_POLLING_NRFLAG) #define _TIF_IO_BITMAP (1 << TIF_IO_BITMAP) #define _TIF_FORCED_TF (1 << TIF_FORCED_TF) @ arch/x86/include/asm/thread_info.h:166 @ struct thread_info { #define _TIF_WORK_CTXSW_NEXT (_TIF_WORK_CTXSW) +#define _TIF_NEED_RESCHED_MASK (_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY) + #define STACK_WARN (THREAD_SIZE/8) /* @ arch/x86/kernel/cpu/mshyperv.c:83 @ EXPORT_SYMBOL_GPL(hv_remove_vmbus_irq); DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_stimer0) { struct pt_regs *old_regs = set_irq_regs(regs); + u64 ip = regs ? instruction_pointer(regs) : 0; inc_irq_stat(hyperv_stimer0_count); if (hv_stimer0_handler) hv_stimer0_handler(); - add_interrupt_randomness(HYPERV_STIMER0_VECTOR, 0); + add_interrupt_randomness(HYPERV_STIMER0_VECTOR, 0, ip); ack_APIC_irq(); set_irq_regs(old_regs); @ arch/x86/kernel/crash_dump_32.c:16 @ #include <linux/uaccess.h> -static void *kdump_buf_page; - static inline bool is_crashed_pfn_valid(unsigned long pfn) { #ifndef CONFIG_X86_PAE @ arch/x86/kernel/crash_dump_32.c:42 @ static inline bool is_crashed_pfn_valid(unsigned long pfn) * @userbuf: if set, @buf is in user address space, use copy_to_user(), * otherwise @buf is in kernel address space, use memcpy(). * - * Copy a page from "oldmem". For this page, there is no pte mapped - * in the current kernel. We stitch up a pte, similar to kmap_atomic. - * - * Calling copy_to_user() in atomic context is not desirable. Hence first - * copying the data to a pre-allocated kernel page and then copying to user - * space in non-atomic context. + * Copy a page from "oldmem". For this page, there might be no pte mapped + * in the current kernel. */ -ssize_t copy_oldmem_page(unsigned long pfn, char *buf, - size_t csize, unsigned long offset, int userbuf) +ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize, + unsigned long offset, int userbuf) { void *vaddr; @ arch/x86/kernel/crash_dump_32.c:56 @ ssize_t copy_oldmem_page(unsigned long pfn, char *buf, if (!is_crashed_pfn_valid(pfn)) return -EFAULT; - vaddr = kmap_atomic_pfn(pfn); + vaddr = kmap_local_pfn(pfn); if (!userbuf) { - memcpy(buf, (vaddr + offset), csize); - kunmap_atomic(vaddr); + memcpy(buf, vaddr + offset, csize); } else { - if (!kdump_buf_page) { - printk(KERN_WARNING "Kdump: Kdump buffer page not" - " allocated\n"); - kunmap_atomic(vaddr); - return -EFAULT; - } - copy_page(kdump_buf_page, vaddr); - kunmap_atomic(vaddr); - if (copy_to_user(buf, (kdump_buf_page + offset), csize)) - return -EFAULT; + if (copy_to_user(buf, vaddr + offset, csize)) + csize = -EFAULT; } - return csize; -} + kunmap_local(vaddr); -static int __init kdump_buf_page_init(void) -{ - int ret = 0; - - kdump_buf_page = kmalloc(PAGE_SIZE, GFP_KERNEL); - if (!kdump_buf_page) { - printk(KERN_WARNING "Kdump: Failed to allocate kdump buffer" - " page\n"); - ret = -ENOMEM; - } - - return ret; + return csize; } -arch_initcall(kdump_buf_page_init); @ arch/x86/kernel/fpu/core.c:162 @ void kernel_fpu_end(void) } EXPORT_SYMBOL_GPL(kernel_fpu_end); +void kernel_fpu_resched(void) +{ + WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); + + if (should_resched(PREEMPT_OFFSET)) { + kernel_fpu_end(); + cond_resched(); + kernel_fpu_begin(); + } +} +EXPORT_SYMBOL_GPL(kernel_fpu_resched); + /* * Save the FPU state (mark it for reload if necessary): * @ arch/x86/kernel/irq_32.c:134 @ int irq_init_percpu_irqstack(unsigned int cpu) return 0; } +#ifndef CONFIG_PREEMPT_RT void do_softirq_own_stack(void) { struct irq_stack *irqstk; @ arch/x86/kernel/irq_32.c:151 @ void do_softirq_own_stack(void) call_on_stack(__do_softirq, isp); } +#endif void __handle_irq(struct irq_desc *desc, struct pt_regs *regs) { @ arch/x86/kernel/irq_64.c:75 @ int irq_init_percpu_irqstack(unsigned int cpu) return map_irq_stack(cpu); } +#ifndef CONFIG_PREEMPT_RT void do_softirq_own_stack(void) { run_on_irqstack_cond(__do_softirq, NULL); } +#endif @ arch/x86/kvm/x86.c:7978 @ int kvm_arch_init(void *opaque) goto out; } +#ifdef CONFIG_PREEMPT_RT + if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { + pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); + r = -EOPNOTSUPP; + goto out; + } +#endif + r = -ENOMEM; x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), __alignof__(struct fpu), SLAB_ACCOUNT, @ arch/x86/mm/highmem_32.c:7 @ #include <linux/swap.h> /* for totalram_pages */ #include <linux/memblock.h> -void *kmap_atomic_high_prot(struct page *page, pgprot_t prot) -{ - unsigned long vaddr; - int idx, type; - - type = kmap_atomic_idx_push(); - idx = type + KM_TYPE_NR*smp_processor_id(); - vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); - BUG_ON(!pte_none(*(kmap_pte-idx))); - set_pte(kmap_pte-idx, mk_pte(page, prot)); - arch_flush_lazy_mmu_mode(); - - return (void *)vaddr; -} -EXPORT_SYMBOL(kmap_atomic_high_prot); - -/* - * This is the same as kmap_atomic() but can map memory that doesn't - * have a struct page associated with it. - */ -void *kmap_atomic_pfn(unsigned long pfn) -{ - return kmap_atomic_prot_pfn(pfn, kmap_prot); -} -EXPORT_SYMBOL_GPL(kmap_atomic_pfn); - -void kunmap_atomic_high(void *kvaddr) -{ - unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK; - - if (vaddr >= __fix_to_virt(FIX_KMAP_END) && - vaddr <= __fix_to_virt(FIX_KMAP_BEGIN)) { - int idx, type; - - type = kmap_atomic_idx(); - idx = type + KM_TYPE_NR * smp_processor_id(); - -#ifdef CONFIG_DEBUG_HIGHMEM - WARN_ON_ONCE(vaddr != __fix_to_virt(FIX_KMAP_BEGIN + idx)); -#endif - /* - * Force other mappings to Oops if they'll try to access this - * pte without first remap it. Keeping stale mappings around - * is a bad idea also, in case the page changes cacheability - * attributes or becomes a protected page in a hypervisor. - */ - kpte_clear_flush(kmap_pte-idx, vaddr); - kmap_atomic_idx_pop(); - arch_flush_lazy_mmu_mode(); - } -#ifdef CONFIG_DEBUG_HIGHMEM - else { - BUG_ON(vaddr < PAGE_OFFSET); - BUG_ON(vaddr >= (unsigned long)high_memory); - } -#endif -} -EXPORT_SYMBOL(kunmap_atomic_high); - void __init set_highmem_pages_init(void) { struct zone *zone; @ arch/x86/mm/init_32.c:397 @ kernel_physical_mapping_init(unsigned long start, return last_map_addr; } -pte_t *kmap_pte; - -static void __init kmap_init(void) -{ - unsigned long kmap_vstart; - - /* - * Cache the first kmap pte: - */ - kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN); - kmap_pte = virt_to_kpte(kmap_vstart); -} - #ifdef CONFIG_HIGHMEM static void __init permanent_kmaps_init(pgd_t *pgd_base) { @ arch/x86/mm/init_32.c:702 @ void __init paging_init(void) __flush_tlb_all(); - kmap_init(); - /* * NOTE: at this point the bootmem allocator is fully available. */ @ arch/x86/mm/iomap_32.c:47 @ void iomap_free(resource_size_t base, unsigned long size) } EXPORT_SYMBOL_GPL(iomap_free); -void *kmap_atomic_prot_pfn(unsigned long pfn, pgprot_t prot) -{ - unsigned long vaddr; - int idx, type; - - preempt_disable(); - pagefault_disable(); - - type = kmap_atomic_idx_push(); - idx = type + KM_TYPE_NR * smp_processor_id(); - vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); - set_pte(kmap_pte - idx, pfn_pte(pfn, prot)); - arch_flush_lazy_mmu_mode(); - - return (void *)vaddr; -} - -/* - * Map 'pfn' using protections 'prot' - */ -void __iomem * -iomap_atomic_prot_pfn(unsigned long pfn, pgprot_t prot) +void __iomem *__iomap_local_pfn_prot(unsigned long pfn, pgprot_t prot) { /* * For non-PAT systems, translate non-WB request to UC- just in @ arch/x86/mm/iomap_32.c:63 @ iomap_atomic_prot_pfn(unsigned long pfn, pgprot_t prot) /* Filter out unsupported __PAGE_KERNEL* bits: */ pgprot_val(prot) &= __default_kernel_pte_mask; - return (void __force __iomem *) kmap_atomic_prot_pfn(pfn, prot); -} -EXPORT_SYMBOL_GPL(iomap_atomic_prot_pfn); - -void -iounmap_atomic(void __iomem *kvaddr) -{ - unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK; - - if (vaddr >= __fix_to_virt(FIX_KMAP_END) && - vaddr <= __fix_to_virt(FIX_KMAP_BEGIN)) { - int idx, type; - - type = kmap_atomic_idx(); - idx = type + KM_TYPE_NR * smp_processor_id(); - -#ifdef CONFIG_DEBUG_HIGHMEM - WARN_ON_ONCE(vaddr != __fix_to_virt(FIX_KMAP_BEGIN + idx)); -#endif - /* - * Force other mappings to Oops if they'll try to access this - * pte without first remap it. Keeping stale mappings around - * is a bad idea also, in case the page changes cacheability - * attributes or becomes a protected page in a hypervisor. - */ - kpte_clear_flush(kmap_pte-idx, vaddr); - kmap_atomic_idx_pop(); - } - - pagefault_enable(); - preempt_enable(); + return (void __force __iomem *)__kmap_local_pfn_prot(pfn, prot); } -EXPORT_SYMBOL_GPL(iounmap_atomic); +EXPORT_SYMBOL_GPL(__iomap_local_pfn_prot); @ arch/xtensa/Kconfig:669 @ endchoice config HIGHMEM bool "High Memory Support" depends on MMU + select KMAP_LOCAL help Linux can use the full amount of RAM in the system by default. However, the default MMUv2 setup only maps the @ arch/xtensa/include/asm/fixmap.h:19 @ #ifdef CONFIG_HIGHMEM #include <linux/threads.h> #include <linux/pgtable.h> -#include <asm/kmap_types.h> +#include <asm/kmap_size.h> #endif /* @ arch/xtensa/include/asm/fixmap.h:42 @ enum fixed_addresses { /* reserved pte's for temporary kernel mappings */ FIX_KMAP_BEGIN, FIX_KMAP_END = FIX_KMAP_BEGIN + - (KM_TYPE_NR * NR_CPUS * DCACHE_N_COLORS) - 1, + (KM_MAX_IDX * NR_CPUS * DCACHE_N_COLORS) - 1, #endif __end_of_fixed_addresses }; @ arch/xtensa/include/asm/highmem.h:19 @ #include <linux/pgtable.h> #include <asm/cacheflush.h> #include <asm/fixmap.h> -#include <asm/kmap_types.h> -#define PKMAP_BASE ((FIXADDR_START - \ +#define PKMAP_BASE ((FIXADDR_START - \ (LAST_PKMAP + 1) * PAGE_SIZE) & PMD_MASK) #define LAST_PKMAP (PTRS_PER_PTE * DCACHE_N_COLORS) #define LAST_PKMAP_MASK (LAST_PKMAP - 1) @ arch/xtensa/include/asm/highmem.h:70 @ static inline void flush_cache_kmaps(void) flush_cache_all(); } +enum fixed_addresses kmap_local_map_idx(int type, unsigned long pfn); +#define arch_kmap_local_map_idx kmap_local_map_idx + +enum fixed_addresses kmap_local_unmap_idx(int type, unsigned long addr); +#define arch_kmap_local_unmap_idx kmap_local_unmap_idx + +#define arch_kmap_local_post_unmap(vaddr) \ + local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE) + void kmap_init(void); #endif @ arch/xtensa/include/asm/spinlock_types.h:5 @ #ifndef __ASM_SPINLOCK_TYPES_H #define __ASM_SPINLOCK_TYPES_H -#if !defined(__LINUX_SPINLOCK_TYPES_H) && !defined(__ASM_SPINLOCK_H) -# error "please don't include this file directly" -#endif - #include <asm-generic/qspinlock_types.h> #include <asm-generic/qrwlock_types.h> @ arch/xtensa/mm/highmem.c:15 @ #include <linux/highmem.h> #include <asm/tlbflush.h> -static pte_t *kmap_pte; - #if DCACHE_WAY_SIZE > PAGE_SIZE unsigned int last_pkmap_nr_arr[DCACHE_N_COLORS]; wait_queue_head_t pkmap_map_wait_arr[DCACHE_N_COLORS]; @ arch/xtensa/mm/highmem.c:34 @ static inline void kmap_waitqueues_init(void) static inline enum fixed_addresses kmap_idx(int type, unsigned long color) { - return (type + KM_TYPE_NR * smp_processor_id()) * DCACHE_N_COLORS + + return (type + KM_MAX_IDX * smp_processor_id()) * DCACHE_N_COLORS + color; } -void *kmap_atomic_high_prot(struct page *page, pgprot_t prot) +enum fixed_addresses kmap_local_map_idx(int type, unsigned long pfn) { - enum fixed_addresses idx; - unsigned long vaddr; - - idx = kmap_idx(kmap_atomic_idx_push(), - DCACHE_ALIAS(page_to_phys(page))); - vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); -#ifdef CONFIG_DEBUG_HIGHMEM - BUG_ON(!pte_none(*(kmap_pte + idx))); -#endif - set_pte(kmap_pte + idx, mk_pte(page, prot)); - - return (void *)vaddr; + return kmap_idx(type, DCACHE_ALIAS(pfn << PAGE_SHIFT)); } -EXPORT_SYMBOL(kmap_atomic_high_prot); -void kunmap_atomic_high(void *kvaddr) +enum fixed_addresses kmap_local_unmap_idx(int type, unsigned long addr) { - if (kvaddr >= (void *)FIXADDR_START && - kvaddr < (void *)FIXADDR_TOP) { - int idx = kmap_idx(kmap_atomic_idx(), - DCACHE_ALIAS((unsigned long)kvaddr)); - - /* - * Force other mappings to Oops if they'll try to access this - * pte without first remap it. Keeping stale mappings around - * is a bad idea also, in case the page changes cacheability - * attributes or becomes a protected page in a hypervisor. - */ - pte_clear(&init_mm, kvaddr, kmap_pte + idx); - local_flush_tlb_kernel_range((unsigned long)kvaddr, - (unsigned long)kvaddr + PAGE_SIZE); - - kmap_atomic_idx_pop(); - } + return kmap_idx(type, DCACHE_ALIAS(addr)); } -EXPORT_SYMBOL(kunmap_atomic_high); void __init kmap_init(void) { - unsigned long kmap_vstart; - /* Check if this memory layout is broken because PKMAP overlaps * page table. */ BUILD_BUG_ON(PKMAP_BASE < TLBTEMP_BASE_1 + TLBTEMP_SIZE); - /* cache the first kmap pte */ - kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN); - kmap_pte = virt_to_kpte(kmap_vstart); kmap_waitqueues_init(); } @ block/blk-mq.c:44 @ #include "blk-mq-sched.h" #include "blk-rq-qos.h" -static DEFINE_PER_CPU(struct list_head, blk_cpu_done); +static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); static void blk_mq_poll_stats_start(struct request_queue *q); static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); @ block/blk-mq.c:568 @ void blk_mq_end_request(struct request *rq, blk_status_t error) } EXPORT_SYMBOL(blk_mq_end_request); -/* - * Softirq action handler - move entries to local list and loop over them - * while passing them to the queue registered handler. - */ -static __latent_entropy void blk_done_softirq(struct softirq_action *h) +static void blk_complete_reqs(struct llist_head *list) { - struct list_head *cpu_list, local_list; - - local_irq_disable(); - cpu_list = this_cpu_ptr(&blk_cpu_done); - list_replace_init(cpu_list, &local_list); - local_irq_enable(); - - while (!list_empty(&local_list)) { - struct request *rq; + struct llist_node *entry = llist_reverse_order(llist_del_all(list)); + struct request *rq, *next; - rq = list_entry(local_list.next, struct request, ipi_list); - list_del_init(&rq->ipi_list); + llist_for_each_entry_safe(rq, next, entry, ipi_list) rq->q->mq_ops->complete(rq); - } } -static void blk_mq_trigger_softirq(struct request *rq) +static __latent_entropy void blk_done_softirq(struct softirq_action *h) { - struct list_head *list; - unsigned long flags; - - local_irq_save(flags); - list = this_cpu_ptr(&blk_cpu_done); - list_add_tail(&rq->ipi_list, list); - - /* - * If the list only contains our just added request, signal a raise of - * the softirq. If there are already entries there, someone already - * raised the irq but it hasn't run yet. - */ - if (list->next == &rq->ipi_list) - raise_softirq_irqoff(BLOCK_SOFTIRQ); - local_irq_restore(flags); + blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); } static int blk_softirq_cpu_dead(unsigned int cpu) { - /* - * If a CPU goes away, splice its entries to the current CPU - * and trigger a run of the softirq - */ - local_irq_disable(); - list_splice_init(&per_cpu(blk_cpu_done, cpu), - this_cpu_ptr(&blk_cpu_done)); - raise_softirq_irqoff(BLOCK_SOFTIRQ); - local_irq_enable(); - + blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); return 0; } - static void __blk_mq_complete_request_remote(void *data) { - struct request *rq = data; - - /* - * For most of single queue controllers, there is only one irq vector - * for handling I/O completion, and the only irq's affinity is set - * to all possible CPUs. On most of ARCHs, this affinity means the irq - * is handled on one specific CPU. - * - * So complete I/O requests in softirq context in case of single queue - * devices to avoid degrading I/O performance due to irqsoff latency. - */ - if (rq->q->nr_hw_queues == 1) - blk_mq_trigger_softirq(rq); - else - rq->q->mq_ops->complete(rq); + __raise_softirq_irqoff(BLOCK_SOFTIRQ); } static inline bool blk_mq_complete_need_ipi(struct request *rq) @ block/blk-mq.c:600 @ static inline bool blk_mq_complete_need_ipi(struct request *rq) if (!IS_ENABLED(CONFIG_SMP) || !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) return false; + /* + * With force threaded interrupts enabled, raising softirq from an SMP + * function call will always result in waking the ksoftirqd thread. + * This is probably worse than completing the request on a different + * cache domain. + */ + if (force_irqthreads) + return false; /* same CPU or cache domain? Complete locally */ if (cpu == rq->mq_ctx->cpu || @ block/blk-mq.c:619 @ static inline bool blk_mq_complete_need_ipi(struct request *rq) return cpu_online(rq->mq_ctx->cpu); } +static void blk_mq_complete_send_ipi(struct request *rq) +{ + struct llist_head *list; + unsigned int cpu; + + cpu = rq->mq_ctx->cpu; + list = &per_cpu(blk_cpu_done, cpu); + if (llist_add(&rq->ipi_list, list)) { + rq->csd.func = __blk_mq_complete_request_remote; + rq->csd.info = rq; + rq->csd.flags = 0; + smp_call_function_single_async(cpu, &rq->csd); + } +} + +static void blk_mq_raise_softirq(struct request *rq) +{ + struct llist_head *list; + + preempt_disable(); + list = this_cpu_ptr(&blk_cpu_done); + if (llist_add(&rq->ipi_list, list)) + raise_softirq(BLOCK_SOFTIRQ); + preempt_enable(); +} + bool blk_mq_complete_request_remote(struct request *rq) { WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); @ block/blk-mq.c:657 @ bool blk_mq_complete_request_remote(struct request *rq) return false; if (blk_mq_complete_need_ipi(rq)) { - rq->csd.func = __blk_mq_complete_request_remote; - rq->csd.info = rq; - rq->csd.flags = 0; - smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd); - } else { - if (rq->q->nr_hw_queues > 1) - return false; - blk_mq_trigger_softirq(rq); + blk_mq_complete_send_ipi(rq); + return true; } - return true; + if (rq->q->nr_hw_queues == 1) { + blk_mq_raise_softirq(rq); + return true; + } + return false; } EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); @ block/blk-mq.c:1573 @ static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, return; if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { - int cpu = get_cpu(); + int cpu = get_cpu_light(); if (cpumask_test_cpu(cpu, hctx->cpumask)) { __blk_mq_run_hw_queue(hctx); - put_cpu(); + put_cpu_light(); return; } - put_cpu(); + put_cpu_light(); } kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, @ block/blk-mq.c:3963 @ static int __init blk_mq_init(void) int i; for_each_possible_cpu(i) - INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i)); + init_llist_head(&per_cpu(blk_cpu_done, i)); open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, @ crypto/cryptd.c:39 @ static struct workqueue_struct *cryptd_wq; struct cryptd_cpu_queue { struct crypto_queue queue; struct work_struct work; + spinlock_t qlock; }; struct cryptd_queue { @ crypto/cryptd.c:109 @ static int cryptd_init_queue(struct cryptd_queue *queue, cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); crypto_init_queue(&cpu_queue->queue, max_cpu_qlen); INIT_WORK(&cpu_queue->work, cryptd_queue_worker); + spin_lock_init(&cpu_queue->qlock); } pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen); return 0; @ crypto/cryptd.c:134 @ static int cryptd_enqueue_request(struct cryptd_queue *queue, struct cryptd_cpu_queue *cpu_queue; refcount_t *refcnt; - cpu = get_cpu(); - cpu_queue = this_cpu_ptr(queue->cpu_queue); + cpu_queue = raw_cpu_ptr(queue->cpu_queue); + spin_lock_bh(&cpu_queue->qlock); + cpu = smp_processor_id(); + err = crypto_enqueue_request(&cpu_queue->queue, request); refcnt = crypto_tfm_ctx(request->tfm); @ crypto/cryptd.c:153 @ static int cryptd_enqueue_request(struct cryptd_queue *queue, refcount_inc(refcnt); out_put_cpu: - put_cpu(); + spin_unlock_bh(&cpu_queue->qlock); return err; } @ crypto/cryptd.c:169 @ static void cryptd_queue_worker(struct work_struct *work) cpu_queue = container_of(work, struct cryptd_cpu_queue, work); /* * Only handle one request at a time to avoid hogging crypto workqueue. - * preempt_disable/enable is used to prevent being preempted by - * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent - * cryptd_enqueue_request() being accessed from software interrupts. */ - local_bh_disable(); - preempt_disable(); + spin_lock_bh(&cpu_queue->qlock); backlog = crypto_get_backlog(&cpu_queue->queue); req = crypto_dequeue_request(&cpu_queue->queue); - preempt_enable(); - local_bh_enable(); + spin_unlock_bh(&cpu_queue->qlock); if (!req) return; @ drivers/atm/eni.c:2057 @ static int eni_send(struct atm_vcc *vcc,struct sk_buff *skb) } submitted++; ATM_SKB(skb)->vcc = vcc; - tasklet_disable(&ENI_DEV(vcc->dev)->task); + tasklet_disable_in_atomic(&ENI_DEV(vcc->dev)->task); res = do_tx(skb); tasklet_enable(&ENI_DEV(vcc->dev)->task); if (res == enq_ok) return 0; @ drivers/block/zram/zram_drv.c:62 @ static void zram_free_page(struct zram *zram, size_t index); static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, u32 index, int offset, struct bio *bio); +#ifdef CONFIG_PREEMPT_RT +static void zram_meta_init_table_locks(struct zram *zram, size_t num_pages) +{ + size_t index; + + for (index = 0; index < num_pages; index++) + spin_lock_init(&zram->table[index].lock); +} + +static int zram_slot_trylock(struct zram *zram, u32 index) +{ + int ret; + + ret = spin_trylock(&zram->table[index].lock); + if (ret) + __set_bit(ZRAM_LOCK, &zram->table[index].flags); + return ret; +} + +static void zram_slot_lock(struct zram *zram, u32 index) +{ + spin_lock(&zram->table[index].lock); + __set_bit(ZRAM_LOCK, &zram->table[index].flags); +} + +static void zram_slot_unlock(struct zram *zram, u32 index) +{ + __clear_bit(ZRAM_LOCK, &zram->table[index].flags); + spin_unlock(&zram->table[index].lock); +} + +#else + +static void zram_meta_init_table_locks(struct zram *zram, size_t num_pages) { } static int zram_slot_trylock(struct zram *zram, u32 index) { @ drivers/block/zram/zram_drv.c:111 @ static void zram_slot_unlock(struct zram *zram, u32 index) { bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); } +#endif static inline bool init_done(struct zram *zram) { @ drivers/block/zram/zram_drv.c:1203 @ static bool zram_meta_alloc(struct zram *zram, u64 disksize) if (!huge_class_size) huge_class_size = zs_huge_class_size(zram->mem_pool); + zram_meta_init_table_locks(zram, num_pages); return true; } @ drivers/block/zram/zram_drv.h:66 @ struct zram_table_entry { unsigned long element; }; unsigned long flags; + spinlock_t lock; #ifdef CONFIG_ZRAM_MEMORY_TRACKING ktime_t ac_time; #endif @ drivers/char/random.c:1255 @ static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs) return *ptr; } -void add_interrupt_randomness(int irq, int irq_flags) +void add_interrupt_randomness(int irq, int irq_flags, __u64 ip) { struct entropy_store *r; struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); - struct pt_regs *regs = get_irq_regs(); unsigned long now = jiffies; cycles_t cycles = random_get_entropy(); __u32 c_high, j_high; - __u64 ip; unsigned long seed; int credit = 0; if (cycles == 0) - cycles = get_reg(fast_pool, regs); + cycles = get_reg(fast_pool, NULL); c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; j_high = (sizeof(now) > 4) ? now >> 32 : 0; fast_pool->pool[0] ^= cycles ^ j_high ^ irq; fast_pool->pool[1] ^= now ^ c_high; - ip = regs ? instruction_pointer(regs) : _RET_IP_; + if (!ip) + ip = _RET_IP_; fast_pool->pool[2] ^= ip; fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : - get_reg(fast_pool, regs); + get_reg(fast_pool, NULL); fast_mix(fast_pool); add_interrupt_bench(cycles); @ drivers/char/tpm/tpm-dev-common.c:23 @ #include "tpm-dev.h" static struct workqueue_struct *tpm_dev_wq; -static DEFINE_MUTEX(tpm_dev_wq_lock); static ssize_t tpm_dev_transmit(struct tpm_chip *chip, struct tpm_space *space, u8 *buf, size_t bufsiz) @ drivers/char/tpm/tpm_tis.c:53 @ static inline struct tpm_tis_tcg_phy *to_tpm_tis_tcg_phy(struct tpm_tis_data *da return container_of(data, struct tpm_tis_tcg_phy, priv); } +#ifdef CONFIG_PREEMPT_RT +/* + * Flushes previous write operations to chip so that a subsequent + * ioread*()s won't stall a cpu. + */ +static inline void tpm_tis_flush(void __iomem *iobase) +{ + ioread8(iobase + TPM_ACCESS(0)); +} +#else +#define tpm_tis_flush(iobase) do { } while (0) +#endif + +static inline void tpm_tis_iowrite8(u8 b, void __iomem *iobase, u32 addr) +{ + iowrite8(b, iobase + addr); + tpm_tis_flush(iobase); +} + +static inline void tpm_tis_iowrite32(u32 b, void __iomem *iobase, u32 addr) +{ + iowrite32(b, iobase + addr); + tpm_tis_flush(iobase); +} + static int interrupts = -1; module_param(interrupts, int, 0444); MODULE_PARM_DESC(interrupts, "Enable interrupts"); @ drivers/char/tpm/tpm_tis.c:197 @ static int tpm_tcg_write_bytes(struct tpm_tis_data *data, u32 addr, u16 len, struct tpm_tis_tcg_phy *phy = to_tpm_tis_tcg_phy(data); while (len--) - iowrite8(*value++, phy->iobase + addr); + tpm_tis_iowrite8(*value++, phy->iobase, addr); return 0; } @ drivers/char/tpm/tpm_tis.c:224 @ static int tpm_tcg_write32(struct tpm_tis_data *data, u32 addr, u32 value) { struct tpm_tis_tcg_phy *phy = to_tpm_tis_tcg_phy(data); - iowrite32(value, phy->iobase + addr); + tpm_tis_iowrite32(value, phy->iobase, addr); return 0; } @ drivers/firewire/ohci.c:2548 @ static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet) struct driver_data *driver_data = packet->driver_data; int ret = -ENOENT; - tasklet_disable(&ctx->tasklet); + tasklet_disable_in_atomic(&ctx->tasklet); if (packet->ack != 0) goto out; @ drivers/firewire/ohci.c:3468 @ static int ohci_flush_iso_completions(struct fw_iso_context *base) struct iso_context *ctx = container_of(base, struct iso_context, base); int ret = 0; - tasklet_disable(&ctx->context.tasklet); + tasklet_disable_in_atomic(&ctx->context.tasklet); if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) { context_tasklet((unsigned long)&ctx->context); @ drivers/firmware/efi/efi.c:69 @ struct mm_struct efi_mm = { struct workqueue_struct *efi_rts_wq; -static bool disable_runtime; +static bool disable_runtime = IS_ENABLED(CONFIG_PREEMPT_RT); static int __init setup_noefi(char *arg) { disable_runtime = true; @ drivers/firmware/efi/efi.c:100 @ static int __init parse_efi_cmdline(char *str) if (parse_option_str(str, "noruntime")) disable_runtime = true; + if (parse_option_str(str, "runtime")) + disable_runtime = false; + if (parse_option_str(str, "nosoftreserve")) set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags); @ drivers/gpu/drm/i915/display/intel_sprite.c:121 @ void intel_pipe_update_start(const struct intel_crtc_state *new_crtc_state) "PSR idle timed out 0x%x, atomic update may fail\n", psr_status); - local_irq_disable(); + if (!IS_ENABLED(CONFIG_PREEMPT_RT)) + local_irq_disable(); crtc->debug.min_vbl = min; crtc->debug.max_vbl = max; @ drivers/gpu/drm/i915/display/intel_sprite.c:147 @ void intel_pipe_update_start(const struct intel_crtc_state *new_crtc_state) break; } - local_irq_enable(); + if (!IS_ENABLED(CONFIG_PREEMPT_RT)) + local_irq_enable(); timeout = schedule_timeout(timeout); - local_irq_disable(); + if (!IS_ENABLED(CONFIG_PREEMPT_RT)) + local_irq_disable(); } finish_wait(wq, &wait); @ drivers/gpu/drm/i915/display/intel_sprite.c:186 @ void intel_pipe_update_start(const struct intel_crtc_state *new_crtc_state) return; irq_disable: - local_irq_disable(); + if (!IS_ENABLED(CONFIG_PREEMPT_RT)) + local_irq_disable(); } /** @ drivers/gpu/drm/i915/display/intel_sprite.c:225 @ void intel_pipe_update_end(struct intel_crtc_state *new_crtc_state) new_crtc_state->uapi.event = NULL; } - local_irq_enable(); + if (!IS_ENABLED(CONFIG_PREEMPT_RT)) + local_irq_enable(); if (intel_vgpu_active(dev_priv)) return; @ drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c:1083 @ static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer struct i915_ggtt *ggtt = cache_to_ggtt(cache); intel_gt_flush_ggtt_writes(ggtt->vm.gt); - io_mapping_unmap_atomic((void __iomem *)vaddr); + io_mapping_unmap_local((void __iomem *)vaddr); if (drm_mm_node_allocated(&cache->node)) { ggtt->vm.clear_range(&ggtt->vm, @ drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c:1149 @ static void *reloc_iomap(struct drm_i915_gem_object *obj, if (cache->vaddr) { intel_gt_flush_ggtt_writes(ggtt->vm.gt); - io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); + io_mapping_unmap_local((void __force __iomem *) unmask_page(cache->vaddr)); } else { struct i915_vma *vma; int err; @ drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c:1197 @ static void *reloc_iomap(struct drm_i915_gem_object *obj, offset += page << PAGE_SHIFT; } - vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, - offset); + vaddr = (void __force *)io_mapping_map_local_wc(&ggtt->iomap, offset); cache->page = page; cache->vaddr = (unsigned long)vaddr; @ drivers/gpu/drm/i915/gt/intel_breadcrumbs.c:345 @ void intel_breadcrumbs_park(struct intel_breadcrumbs *b) /* Kick the work once more to drain the signalers */ irq_work_sync(&b->irq_work); while (unlikely(READ_ONCE(b->irq_armed))) { - local_irq_disable(); - signal_irq_work(&b->irq_work); - local_irq_enable(); + irq_work_queue(&b->irq_work); cond_resched(); + irq_work_sync(&b->irq_work); } GEM_BUG_ON(!list_empty(&b->signalers)); } @ drivers/gpu/drm/i915/gt/intel_engine_pm.c:63 @ static int __engine_unpark(struct intel_wakeref *wf) static inline unsigned long __timeline_mark_lock(struct intel_context *ce) { - unsigned long flags; + unsigned long flags = 0; - local_irq_save(flags); + if (!force_irqthreads) + local_irq_save(flags); mutex_acquire(&ce->timeline->mutex.dep_map, 2, 0, _THIS_IP_); return flags; @ drivers/gpu/drm/i915/gt/intel_engine_pm.c:76 @ static inline void __timeline_mark_unlock(struct intel_context *ce, unsigned long flags) { mutex_release(&ce->timeline->mutex.dep_map, _THIS_IP_); - local_irq_restore(flags); + if (!force_irqthreads) + local_irq_restore(flags); } #else @ drivers/gpu/drm/i915/i915_gem.c:358 @ gtt_user_read(struct io_mapping *mapping, char __user *user_data, int length) { void __iomem *vaddr; - unsigned long unwritten; + bool fail = false; /* We can use the cpu mem copy function because this is X86. */ - vaddr = io_mapping_map_atomic_wc(mapping, base); - unwritten = __copy_to_user_inatomic(user_data, - (void __force *)vaddr + offset, - length); - io_mapping_unmap_atomic(vaddr); - if (unwritten) { - vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); - unwritten = copy_to_user(user_data, - (void __force *)vaddr + offset, - length); - io_mapping_unmap(vaddr); - } - return unwritten; + vaddr = io_mapping_map_local_wc(mapping, base); + if (copy_to_user(user_data, (void __force *)vaddr + offset, length)) + fail = true; + io_mapping_unmap_local(vaddr); + + return fail; } static int @ drivers/gpu/drm/i915/i915_gem.c:535 @ ggtt_write(struct io_mapping *mapping, char __user *user_data, int length) { void __iomem *vaddr; - unsigned long unwritten; + bool fail = false; /* We can use the cpu mem copy function because this is X86. */ - vaddr = io_mapping_map_atomic_wc(mapping, base); - unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, - user_data, length); - io_mapping_unmap_atomic(vaddr); - if (unwritten) { - vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); - unwritten = copy_from_user((void __force *)vaddr + offset, - user_data, length); - io_mapping_unmap(vaddr); - } - - return unwritten; + vaddr = io_mapping_map_local_wc(mapping, base); + if (copy_from_user((void __force *)vaddr + offset, user_data, length)) + fail = true; + io_mapping_unmap_local(vaddr); + return fail; } /** @ drivers/gpu/drm/i915/i915_irq.c:850 @ static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc, spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ + preempt_disable_rt(); /* Get optional system timestamp before query. */ if (stime) @ drivers/gpu/drm/i915/i915_irq.c:902 @ static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc, *etime = ktime_get(); /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ + preempt_enable_rt(); spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); @ drivers/gpu/drm/i915/i915_trace.h:5 @ #if !defined(_I915_TRACE_H_) || defined(TRACE_HEADER_MULTI_READ) #define _I915_TRACE_H_ +#ifdef CONFIG_PREEMPT_RT +#define NOTRACE +#endif + #include <linux/stringify.h> #include <linux/types.h> #include <linux/tracepoint.h> @ drivers/gpu/drm/i915/i915_trace.h:785 @ DEFINE_EVENT(i915_request, i915_request_add, TP_ARGS(rq) ); -#if defined(CONFIG_DRM_I915_LOW_LEVEL_TRACEPOINTS) +#if defined(CONFIG_DRM_I915_LOW_LEVEL_TRACEPOINTS) && !defined(NOTRACE) DEFINE_EVENT(i915_request, i915_request_submit, TP_PROTO(struct i915_request *rq), TP_ARGS(rq) @ drivers/gpu/drm/i915/selftests/i915_gem.c:60 @ static void trash_stolen(struct drm_i915_private *i915) ggtt->vm.insert_page(&ggtt->vm, dma, slot, I915_CACHE_NONE, 0); - s = io_mapping_map_atomic_wc(&ggtt->iomap, slot); + s = io_mapping_map_local_wc(&ggtt->iomap, slot); for (x = 0; x < PAGE_SIZE / sizeof(u32); x++) { prng = next_pseudo_random32(prng); iowrite32(prng, &s[x]); } - io_mapping_unmap_atomic(s); + io_mapping_unmap_local(s); } ggtt->vm.clear_range(&ggtt->vm, slot, PAGE_SIZE); @ drivers/gpu/drm/i915/selftests/i915_gem_gtt.c:1204 @ static int igt_ggtt_page(void *arg) u64 offset = tmp.start + order[n] * PAGE_SIZE; u32 __iomem *vaddr; - vaddr = io_mapping_map_atomic_wc(&ggtt->iomap, offset); + vaddr = io_mapping_map_local_wc(&ggtt->iomap, offset); iowrite32(n, vaddr + n); - io_mapping_unmap_atomic(vaddr); + io_mapping_unmap_local(vaddr); } intel_gt_flush_ggtt_writes(ggtt->vm.gt); @ drivers/gpu/drm/i915/selftests/i915_gem_gtt.c:1216 @ static int igt_ggtt_page(void *arg) u32 __iomem *vaddr; u32 val; - vaddr = io_mapping_map_atomic_wc(&ggtt->iomap, offset); + vaddr = io_mapping_map_local_wc(&ggtt->iomap, offset); val = ioread32(vaddr + n); - io_mapping_unmap_atomic(vaddr); + io_mapping_unmap_local(vaddr); if (val != n) { pr_err("insert page failed: found %d, expected %d\n", @ drivers/gpu/drm/nouveau/nvkm/subdev/devinit/fbmem.h:63 @ fbmem_fini(struct io_mapping *fb) static inline u32 fbmem_peek(struct io_mapping *fb, u32 off) { - u8 __iomem *p = io_mapping_map_atomic_wc(fb, off & PAGE_MASK); + u8 __iomem *p = io_mapping_map_local_wc(fb, off & PAGE_MASK); u32 val = ioread32(p + (off & ~PAGE_MASK)); - io_mapping_unmap_atomic(p); + io_mapping_unmap_local(p); return val; } static inline void fbmem_poke(struct io_mapping *fb, u32 off, u32 val) { - u8 __iomem *p = io_mapping_map_atomic_wc(fb, off & PAGE_MASK); + u8 __iomem *p = io_mapping_map_local_wc(fb, off & PAGE_MASK); iowrite32(val, p + (off & ~PAGE_MASK)); wmb(); - io_mapping_unmap_atomic(p); + io_mapping_unmap_local(p); } static inline bool @ drivers/gpu/drm/qxl/qxl_image.c:127 @ qxl_image_init_helper(struct qxl_device *qdev, wrong (check the bitmaps are sent correctly first) */ - ptr = qxl_bo_kmap_atomic_page(qdev, chunk_bo, 0); + ptr = qxl_bo_kmap_local_page(qdev, chunk_bo, 0); chunk = ptr; chunk->data_size = height * chunk_stride; chunk->prev_chunk = 0; chunk->next_chunk = 0; - qxl_bo_kunmap_atomic_page(qdev, chunk_bo, ptr); + qxl_bo_kunmap_local_page(qdev, chunk_bo, ptr); { void *k_data, *i_data; @ drivers/gpu/drm/qxl/qxl_image.c:146 @ qxl_image_init_helper(struct qxl_device *qdev, i_data = (void *)data; while (remain > 0) { - ptr = qxl_bo_kmap_atomic_page(qdev, chunk_bo, page << PAGE_SHIFT); + ptr = qxl_bo_kmap_local_page(qdev, chunk_bo, page << PAGE_SHIFT); if (page == 0) { chunk = ptr; @ drivers/gpu/drm/qxl/qxl_image.c:160 @ qxl_image_init_helper(struct qxl_device *qdev, memcpy(k_data, i_data, size); - qxl_bo_kunmap_atomic_page(qdev, chunk_bo, ptr); + qxl_bo_kunmap_local_page(qdev, chunk_bo, ptr); i_data += size; remain -= size; page++; @ drivers/gpu/drm/qxl/qxl_image.c:178 @ qxl_image_init_helper(struct qxl_device *qdev, page_offset = offset_in_page(out_offset); size = min((int)(PAGE_SIZE - page_offset), remain); - ptr = qxl_bo_kmap_atomic_page(qdev, chunk_bo, page_base); + ptr = qxl_bo_kmap_local_page(qdev, chunk_bo, page_base); k_data = ptr + page_offset; memcpy(k_data, i_data, size); - qxl_bo_kunmap_atomic_page(qdev, chunk_bo, ptr); + qxl_bo_kunmap_local_page(qdev, chunk_bo, ptr); remain -= size; i_data += size; out_offset += size; @ drivers/gpu/drm/qxl/qxl_image.c:192 @ qxl_image_init_helper(struct qxl_device *qdev, qxl_bo_kunmap(chunk_bo); image_bo = dimage->bo; - ptr = qxl_bo_kmap_atomic_page(qdev, image_bo, 0); + ptr = qxl_bo_kmap_local_page(qdev, image_bo, 0); image = ptr; image->descriptor.id = 0; @ drivers/gpu/drm/qxl/qxl_image.c:215 @ qxl_image_init_helper(struct qxl_device *qdev, break; default: DRM_ERROR("unsupported image bit depth\n"); - qxl_bo_kunmap_atomic_page(qdev, image_bo, ptr); + qxl_bo_kunmap_local_page(qdev, image_bo, ptr); return -EINVAL; } image->u.bitmap.flags = QXL_BITMAP_TOP_DOWN; @ drivers/gpu/drm/qxl/qxl_image.c:225 @ qxl_image_init_helper(struct qxl_device *qdev, image->u.bitmap.palette = 0; image->u.bitmap.data = qxl_bo_physical_address(qdev, chunk_bo, 0); - qxl_bo_kunmap_atomic_page(qdev, image_bo, ptr); + qxl_bo_kunmap_local_page(qdev, image_bo, ptr); return 0; } @ drivers/gpu/drm/qxl/qxl_ioctl.c:92 @ apply_reloc(struct qxl_device *qdev, struct qxl_reloc_info *info) { void *reloc_page; - reloc_page = qxl_bo_kmap_atomic_page(qdev, info->dst_bo, info->dst_offset & PAGE_MASK); + reloc_page = qxl_bo_kmap_local_page(qdev, info->dst_bo, info->dst_offset & PAGE_MASK); *(uint64_t *)(reloc_page + (info->dst_offset & ~PAGE_MASK)) = qxl_bo_physical_address(qdev, info->src_bo, info->src_offset); - qxl_bo_kunmap_atomic_page(qdev, info->dst_bo, reloc_page); + qxl_bo_kunmap_local_page(qdev, info->dst_bo, reloc_page); } static void @ drivers/gpu/drm/qxl/qxl_ioctl.c:108 @ apply_surf_reloc(struct qxl_device *qdev, struct qxl_reloc_info *info) if (info->src_bo && !info->src_bo->is_primary) id = info->src_bo->surface_id; - reloc_page = qxl_bo_kmap_atomic_page(qdev, info->dst_bo, info->dst_offset & PAGE_MASK); + reloc_page = qxl_bo_kmap_local_page(qdev, info->dst_bo, info->dst_offset & PAGE_MASK); *(uint32_t *)(reloc_page + (info->dst_offset & ~PAGE_MASK)) = id; - qxl_bo_kunmap_atomic_page(qdev, info->dst_bo, reloc_page); + qxl_bo_kunmap_local_page(qdev, info->dst_bo, reloc_page); } /* return holding the reference to this object */ @ drivers/gpu/drm/qxl/qxl_ioctl.c:152 @ static int qxl_process_single_command(struct qxl_device *qdev, struct qxl_bo *cmd_bo; void *fb_cmd; int i, ret, num_relocs; - int unwritten; switch (cmd->type) { case QXL_CMD_DRAW: @ drivers/gpu/drm/qxl/qxl_ioctl.c:187 @ static int qxl_process_single_command(struct qxl_device *qdev, goto out_free_reloc; /* TODO copy slow path code from i915 */ - fb_cmd = qxl_bo_kmap_atomic_page(qdev, cmd_bo, (release->release_offset & PAGE_MASK)); - unwritten = __copy_from_user_inatomic_nocache - (fb_cmd + sizeof(union qxl_release_info) + (release->release_offset & ~PAGE_MASK), - u64_to_user_ptr(cmd->command), cmd->command_size); + fb_cmd = qxl_bo_kmap_local_page(qdev, cmd_bo, (release->release_offset & PAGE_MASK)); - { + if (copy_from_user(fb_cmd + sizeof(union qxl_release_info) + + (release->release_offset & ~PAGE_MASK), + u64_to_user_ptr(cmd->command), cmd->command_size)) { + ret = -EFAULT; + } else { struct qxl_drawable *draw = fb_cmd; draw->mm_time = qdev->rom->mm_clock; } - qxl_bo_kunmap_atomic_page(qdev, cmd_bo, fb_cmd); - if (unwritten) { - DRM_ERROR("got unwritten %d\n", unwritten); - ret = -EFAULT; + qxl_bo_kunmap_local_page(qdev, cmd_bo, fb_cmd); + if (ret) { + DRM_ERROR("copy from user failed %d\n", ret); goto out_free_release; } @ drivers/gpu/drm/qxl/qxl_object.c:176 @ int qxl_bo_kmap(struct qxl_bo *bo, void **ptr) return 0; } -void *qxl_bo_kmap_atomic_page(struct qxl_device *qdev, - struct qxl_bo *bo, int page_offset) +void *qxl_bo_kmap_local_page(struct qxl_device *qdev, + struct qxl_bo *bo, int page_offset) { unsigned long offset; void *rptr; @ drivers/gpu/drm/qxl/qxl_object.c:192 @ void *qxl_bo_kmap_atomic_page(struct qxl_device *qdev, goto fallback; offset = bo->tbo.mem.start << PAGE_SHIFT; - return io_mapping_map_atomic_wc(map, offset + page_offset); + return io_mapping_map_local_wc(map, offset + page_offset); fallback: if (bo->kptr) { rptr = bo->kptr + (page_offset * PAGE_SIZE); @ drivers/gpu/drm/qxl/qxl_object.c:218 @ void qxl_bo_kunmap(struct qxl_bo *bo) ttm_bo_kunmap(&bo->kmap); } -void qxl_bo_kunmap_atomic_page(struct qxl_device *qdev, - struct qxl_bo *bo, void *pmap) +void qxl_bo_kunmap_local_page(struct qxl_device *qdev, + struct qxl_bo *bo, void *pmap) { if ((bo->tbo.mem.mem_type != TTM_PL_VRAM) && (bo->tbo.mem.mem_type != TTM_PL_PRIV)) goto fallback; - io_mapping_unmap_atomic(pmap); + io_mapping_unmap_local(pmap); return; fallback: qxl_bo_kunmap(bo); @ drivers/gpu/drm/qxl/qxl_object.h:92 @ extern int qxl_bo_create(struct qxl_device *qdev, struct qxl_bo **bo_ptr); extern int qxl_bo_kmap(struct qxl_bo *bo, void **ptr); extern void qxl_bo_kunmap(struct qxl_bo *bo); -void *qxl_bo_kmap_atomic_page(struct qxl_device *qdev, struct qxl_bo *bo, int page_offset); -void qxl_bo_kunmap_atomic_page(struct qxl_device *qdev, struct qxl_bo *bo, void *map); +void *qxl_bo_kmap_local_page(struct qxl_device *qdev, struct qxl_bo *bo, int page_offset); +void qxl_bo_kunmap_local_page(struct qxl_device *qdev, struct qxl_bo *bo, void *map); extern struct qxl_bo *qxl_bo_ref(struct qxl_bo *bo); extern void qxl_bo_unref(struct qxl_bo **bo); extern int qxl_bo_pin(struct qxl_bo *bo); @ drivers/gpu/drm/qxl/qxl_release.c:417 @ union qxl_release_info *qxl_release_map(struct qxl_device *qdev, union qxl_release_info *info; struct qxl_bo *bo = release->release_bo; - ptr = qxl_bo_kmap_atomic_page(qdev, bo, release->release_offset & PAGE_MASK); + ptr = qxl_bo_kmap_local_page(qdev, bo, release->release_offset & PAGE_MASK); if (!ptr) return NULL; info = ptr + (release->release_offset & ~PAGE_MASK); @ drivers/gpu/drm/qxl/qxl_release.c:432 @ void qxl_release_unmap(struct qxl_device *qdev, void *ptr; ptr = ((void *)info) - (release->release_offset & ~PAGE_MASK); - qxl_bo_kunmap_atomic_page(qdev, bo, ptr); + qxl_bo_kunmap_local_page(qdev, bo, ptr); } void qxl_release_fence_buffer_objects(struct qxl_release *release) @ drivers/gpu/drm/radeon/radeon_display.c:1826 @ int radeon_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe, struct radeon_device *rdev = dev->dev_private; /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ + preempt_disable_rt(); /* Get optional system timestamp before query. */ if (stime) @ drivers/gpu/drm/radeon/radeon_display.c:1919 @ int radeon_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe, *etime = ktime_get(); /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ + preempt_enable_rt(); /* Decode into vertical and horizontal scanout position. */ *vpos = position & 0x1fff; @ drivers/gpu/drm/ttm/ttm_bo_util.c:184 @ static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src, return -ENOMEM; src = (void *)((unsigned long)src + (page << PAGE_SHIFT)); - dst = kmap_atomic_prot(d, prot); - if (!dst) - return -ENOMEM; + /* + * Ensure that a highmem page is mapped with the correct + * pgprot. For non highmem the mapping is already there. + */ + dst = kmap_local_page_prot(d, prot); memcpy_fromio(dst, src, PAGE_SIZE); - kunmap_atomic(dst); + kunmap_local(dst); return 0; } @ drivers/gpu/drm/ttm/ttm_bo_util.c:208 @ static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst, return -ENOMEM; dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT)); - src = kmap_atomic_prot(s, prot); - if (!src) - return -ENOMEM; + /* + * Ensure that a highmem page is mapped with the correct + * pgprot. For non highmem the mapping is already there. + */ + src = kmap_local_page_prot(s, prot); memcpy_toio(dst, src, PAGE_SIZE); - kunmap_atomic(src); + kunmap_local(src); return 0; } @ drivers/gpu/drm/vmwgfx/vmwgfx_blit.c:378 @ static int vmw_bo_cpu_blit_line(struct vmw_bo_blit_line_data *d, copy_size = min_t(u32, copy_size, PAGE_SIZE - src_page_offset); if (unmap_src) { - kunmap_atomic(d->src_addr); + kunmap_local(d->src_addr); d->src_addr = NULL; } if (unmap_dst) { - kunmap_atomic(d->dst_addr); + kunmap_local(d->dst_addr); d->dst_addr = NULL; } @ drivers/gpu/drm/vmwgfx/vmwgfx_blit.c:391 @ static int vmw_bo_cpu_blit_line(struct vmw_bo_blit_line_data *d, if (WARN_ON_ONCE(dst_page >= d->dst_num_pages)) return -EINVAL; - d->dst_addr = - kmap_atomic_prot(d->dst_pages[dst_page], - d->dst_prot); - if (!d->dst_addr) - return -ENOMEM; - + d->dst_addr = kmap_local_page_prot(d->dst_pages[dst_page], + d->dst_prot); d->mapped_dst = dst_page; } @ drivers/gpu/drm/vmwgfx/vmwgfx_blit.c:400 @ static int vmw_bo_cpu_blit_line(struct vmw_bo_blit_line_data *d, if (WARN_ON_ONCE(src_page >= d->src_num_pages)) return -EINVAL; - d->src_addr = - kmap_atomic_prot(d->src_pages[src_page], - d->src_prot); - if (!d->src_addr) - return -ENOMEM; - + d->src_addr = kmap_local_page_prot(d->src_pages[src_page], + d->src_prot); d->mapped_src = src_page; } diff->do_cpy(diff, d->dst_addr + dst_page_offset, @ drivers/gpu/drm/vmwgfx/vmwgfx_blit.c:431 @ static int vmw_bo_cpu_blit_line(struct vmw_bo_blit_line_data *d, * * Performs a CPU blit from one buffer object to another avoiding a full * bo vmap which may exhaust- or fragment vmalloc space. - * On supported architectures (x86), we're using kmap_atomic which avoids - * cross-processor TLB- and cache flushes and may, on non-HIGHMEM systems + * + * On supported architectures (x86), we're using kmap_local_prot() which + * avoids cross-processor TLB- and cache flushes. kmap_local_prot() will + * either map a highmem page with the proper pgprot on HIGHMEM=y systems or * reference already set-up mappings. * * Neither of the buffer objects may be placed in PCI memory @ drivers/gpu/drm/vmwgfx/vmwgfx_blit.c:497 @ int vmw_bo_cpu_blit(struct ttm_buffer_object *dst, } out: if (d.src_addr) - kunmap_atomic(d.src_addr); + kunmap_local(d.src_addr); if (d.dst_addr) - kunmap_atomic(d.dst_addr); + kunmap_local(d.dst_addr); return ret; } @ drivers/hv/hyperv_vmbus.h:22 @ #include <linux/atomic.h> #include <linux/hyperv.h> #include <linux/interrupt.h> +#include <linux/irq.h> #include "hv_trace.h" @ drivers/hv/vmbus_drv.c:25 @ #include <linux/clockchips.h> #include <linux/cpu.h> #include <linux/sched/task_stack.h> +#include <linux/irq.h> #include <linux/delay.h> #include <linux/notifier.h> @ drivers/hv/vmbus_drv.c:1311 @ static void vmbus_isr(void) void *page_addr = hv_cpu->synic_event_page; struct hv_message *msg; union hv_synic_event_flags *event; + struct pt_regs *regs = get_irq_regs(); + u64 ip = regs ? instruction_pointer(regs) : 0; bool handled = false; if (unlikely(page_addr == NULL)) @ drivers/hv/vmbus_drv.c:1357 @ static void vmbus_isr(void) tasklet_schedule(&hv_cpu->msg_dpc); } - add_interrupt_randomness(hv_get_vector(), 0); + add_interrupt_randomness(hv_get_vector(), 0, ip); } /* @ drivers/hv/vmbus_drv.c:1365 @ static void vmbus_isr(void) * buffer and call into Hyper-V to transfer the data. */ static void hv_kmsg_dump(struct kmsg_dumper *dumper, - enum kmsg_dump_reason reason) + enum kmsg_dump_reason reason, + struct kmsg_dumper_iter *iter) { size_t bytes_written; phys_addr_t panic_pa; @ drivers/hv/vmbus_drv.c:1381 @ static void hv_kmsg_dump(struct kmsg_dumper *dumper, * Write dump contents to the page. No need to synchronize; panic should * be single-threaded. */ - kmsg_dump_get_buffer(dumper, false, hv_panic_page, HV_HYP_PAGE_SIZE, + kmsg_dump_get_buffer(iter, false, hv_panic_page, HV_HYP_PAGE_SIZE, &bytes_written); if (bytes_written) hyperv_report_panic_msg(panic_pa, bytes_written); @ drivers/leds/trigger/Kconfig:67 @ config LEDS_TRIGGER_BACKLIGHT config LEDS_TRIGGER_CPU bool "LED CPU Trigger" + depends on !PREEMPT_RT help This allows LEDs to be controlled by active CPUs. This shows the active CPUs across an array of LEDs so you can see which @ drivers/md/raid5.c:2220 @ static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) struct raid5_percpu *percpu; unsigned long cpu; - cpu = get_cpu(); + cpu = get_cpu_light(); percpu = per_cpu_ptr(conf->percpu, cpu); + spin_lock(&percpu->lock); if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { ops_run_biofill(sh); overlap_clear++; @ drivers/md/raid5.c:2281 @ static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) if (test_and_clear_bit(R5_Overlap, &dev->flags)) wake_up(&sh->raid_conf->wait_for_overlap); } - put_cpu(); + spin_unlock(&percpu->lock); + put_cpu_light(); } static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) @ drivers/md/raid5.c:7104 @ static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) __func__, cpu); return -ENOMEM; } + spin_lock_init(&per_cpu_ptr(conf->percpu, cpu)->lock); return 0; } @ drivers/md/raid5.h:638 @ struct r5conf { int recovery_disabled; /* per cpu variables */ struct raid5_percpu { + spinlock_t lock; /* Protection for -RT */ struct page *spare_page; /* Used when checking P/Q in raid6 */ void *scribble; /* space for constructing buffer * lists and performing address @ drivers/mtd/mtdoops.c:270 @ static void find_next_position(struct mtdoops_context *cxt) } static void mtdoops_do_dump(struct kmsg_dumper *dumper, - enum kmsg_dump_reason reason) + enum kmsg_dump_reason reason, + struct kmsg_dumper_iter *iter) { struct mtdoops_context *cxt = container_of(dumper, struct mtdoops_context, dump); @ drivers/mtd/mtdoops.c:280 @ static void mtdoops_do_dump(struct kmsg_dumper *dumper, if (reason == KMSG_DUMP_OOPS && !dump_oops) return; - kmsg_dump_get_buffer(dumper, true, cxt->oops_buf + MTDOOPS_HEADER_SIZE, + kmsg_dump_get_buffer(iter, true, cxt->oops_buf + MTDOOPS_HEADER_SIZE, record_size - MTDOOPS_HEADER_SIZE, NULL); if (reason != KMSG_DUMP_OOPS) { @ drivers/net/arcnet/arc-rimi.c:335 @ static int __init arc_rimi_init(void) dev->irq = 9; if (arcrimi_probe(dev)) { - free_netdev(dev); + free_arcdev(dev); return -EIO; } @ drivers/net/arcnet/arc-rimi.c:352 @ static void __exit arc_rimi_exit(void) iounmap(lp->mem_start); release_mem_region(dev->mem_start, dev->mem_end - dev->mem_start + 1); free_irq(dev->irq, dev); - free_netdev(dev); + free_arcdev(dev); } #ifndef MODULE @ drivers/net/arcnet/arcdevice.h:301 @ struct arcnet_local { int excnak_pending; /* We just got an excesive nak interrupt */ + /* RESET flag handling */ + int reset_in_progress; + struct work_struct reset_work; + struct { uint16_t sequence; /* sequence number (incs with each packet) */ __be16 aborted_seq; @ drivers/net/arcnet/arcdevice.h:357 @ void arcnet_dump_skb(struct net_device *dev, struct sk_buff *skb, char *desc) void arcnet_unregister_proto(struct ArcProto *proto); irqreturn_t arcnet_interrupt(int irq, void *dev_id); + struct net_device *alloc_arcdev(const char *name); +void free_arcdev(struct net_device *dev); int arcnet_open(struct net_device *dev); int arcnet_close(struct net_device *dev); @ drivers/net/arcnet/arcnet.c:390 @ static void arcnet_timer(struct timer_list *t) struct arcnet_local *lp = from_timer(lp, t, timer); struct net_device *dev = lp->dev; - if (!netif_carrier_ok(dev)) { + spin_lock_irq(&lp->lock); + + if (!lp->reset_in_progress && !netif_carrier_ok(dev)) { netif_carrier_on(dev); netdev_info(dev, "link up\n"); } + + spin_unlock_irq(&lp->lock); +} + +static void reset_device_work(struct work_struct *work) +{ + struct arcnet_local *lp; + struct net_device *dev; + + lp = container_of(work, struct arcnet_local, reset_work); + dev = lp->dev; + + /* Do not bring the network interface back up if an ifdown + * was already done. + */ + if (!netif_running(dev) || !lp->reset_in_progress) + return; + + rtnl_lock(); + + /* Do another check, in case of an ifdown that was triggered in + * the small race window between the exit condition above and + * acquiring RTNL. + */ + if (!netif_running(dev) || !lp->reset_in_progress) + goto out; + + dev_close(dev); + dev_open(dev, NULL); + +out: + rtnl_unlock(); } static void arcnet_reply_tasklet(unsigned long data) @ drivers/net/arcnet/arcnet.c:489 @ struct net_device *alloc_arcdev(const char *name) lp->dev = dev; spin_lock_init(&lp->lock); timer_setup(&lp->timer, arcnet_timer, 0); + INIT_WORK(&lp->reset_work, reset_device_work); } return dev; } EXPORT_SYMBOL(alloc_arcdev); +void free_arcdev(struct net_device *dev) +{ + struct arcnet_local *lp = netdev_priv(dev); + + /* Do not cancel this at ->ndo_close(), as the workqueue itself + * indirectly calls the ifdown path through dev_close(). + */ + cancel_work_sync(&lp->reset_work); + free_netdev(dev); +} +EXPORT_SYMBOL(free_arcdev); + /* Open/initialize the board. This is called sometime after booting when * the 'ifconfig' program is run. * @ drivers/net/arcnet/arcnet.c:637 @ int arcnet_close(struct net_device *dev) /* shut down the card */ lp->hw.close(dev); + + /* reset counters */ + lp->reset_in_progress = 0; + module_put(lp->hw.owner); return 0; } @ drivers/net/arcnet/arcnet.c:874 @ irqreturn_t arcnet_interrupt(int irq, void *dev_id) spin_lock_irqsave(&lp->lock, flags); + if (lp->reset_in_progress) + goto out; + /* RESET flag was enabled - if device is not running, we must * clear it right away (but nothing else). */ @ drivers/net/arcnet/arcnet.c:909 @ irqreturn_t arcnet_interrupt(int irq, void *dev_id) if (status & RESETflag) { arc_printk(D_NORMAL, dev, "spurious reset (status=%Xh)\n", status); - arcnet_close(dev); - arcnet_open(dev); + + lp->reset_in_progress = 1; + netif_stop_queue(dev); + netif_carrier_off(dev); + schedule_work(&lp->reset_work); /* get out of the interrupt handler! */ - break; + goto out; } /* RX is inhibited - we must have received something. * Prepare to receive into the next buffer. @ drivers/net/arcnet/arcnet.c:1112 @ irqreturn_t arcnet_interrupt(int irq, void *dev_id) udelay(1); lp->hw.intmask(dev, lp->intmask); +out: spin_unlock_irqrestore(&lp->lock, flags); return retval; } @ drivers/net/arcnet/com20020-isa.c:172 @ static int __init com20020_init(void) dev->irq = 9; if (com20020isa_probe(dev)) { - free_netdev(dev); + free_arcdev(dev); return -EIO; } @ drivers/net/arcnet/com20020-isa.c:185 @ static void __exit com20020_exit(void) unregister_netdev(my_dev); free_irq(my_dev->irq, my_dev); release_region(my_dev->base_addr, ARCNET_TOTAL_SIZE); - free_netdev(my_dev); + free_arcdev(my_dev); } #ifndef MODULE @ drivers/net/arcnet/com20020-pci.c:294 @ static void com20020pci_remove(struct pci_dev *pdev) unregister_netdev(dev); free_irq(dev->irq, dev); - free_netdev(dev); + free_arcdev(dev); } } @ drivers/net/arcnet/com20020_cs.c:180 @ static void com20020_detach(struct pcmcia_device *link) dev = info->dev; if (dev) { dev_dbg(&link->dev, "kfree...\n"); - free_netdev(dev); + free_arcdev(dev); } dev_dbg(&link->dev, "kfree2...\n"); kfree(info); @ drivers/net/arcnet/com90io.c:399 @ static int __init com90io_init(void) err = com90io_probe(dev); if (err) { - free_netdev(dev); + free_arcdev(dev); return err; } @ drivers/net/arcnet/com90io.c:422 @ static void __exit com90io_exit(void) free_irq(dev->irq, dev); release_region(dev->base_addr, ARCNET_TOTAL_SIZE); - free_netdev(dev); + free_arcdev(dev); } module_init(com90io_init) @ drivers/net/arcnet/com90xx.c:557 @ static int __init com90xx_found(int ioaddr, int airq, u_long shmem, err_release_mem: release_mem_region(dev->mem_start, dev->mem_end - dev->mem_start + 1); err_free_dev: - free_netdev(dev); + free_arcdev(dev); return -EIO; } @ drivers/net/arcnet/com90xx.c:675 @ static void __exit com90xx_exit(void) release_region(dev->base_addr, ARCNET_TOTAL_SIZE); release_mem_region(dev->mem_start, dev->mem_end - dev->mem_start + 1); - free_netdev(dev); + free_arcdev(dev); } } @ drivers/net/ethernet/chelsio/cxgb/common.h:241 @ struct adapter { int msg_enable; u32 mmio_len; - struct work_struct ext_intr_handler_task; struct adapter_params params; /* Terminator modules. */ @ drivers/net/ethernet/chelsio/cxgb/common.h:259 @ struct adapter { /* guards async operations */ spinlock_t async_lock ____cacheline_aligned; + u32 pending_thread_intr; u32 slow_intr_mask; int t1powersave; }; @ drivers/net/ethernet/chelsio/cxgb/common.h:337 @ void t1_interrupts_enable(adapter_t *adapter); void t1_interrupts_disable(adapter_t *adapter); void t1_interrupts_clear(adapter_t *adapter); int t1_elmer0_ext_intr_handler(adapter_t *adapter); -void t1_elmer0_ext_intr(adapter_t *adapter); -int t1_slow_intr_handler(adapter_t *adapter); +irqreturn_t t1_slow_intr_handler(adapter_t *adapter); int t1_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc); const struct board_info *t1_get_board_info(unsigned int board_id); @ drivers/net/ethernet/chelsio/cxgb/common.h:349 @ int t1_get_board_rev(adapter_t *adapter, const struct board_info *bi, int t1_init_hw_modules(adapter_t *adapter); int t1_init_sw_modules(adapter_t *adapter, const struct board_info *bi); void t1_free_sw_modules(adapter_t *adapter); -void t1_fatal_err(adapter_t *adapter); void t1_link_changed(adapter_t *adapter, int port_id); void t1_link_negotiated(adapter_t *adapter, int port_id, int link_stat, int speed, int duplex, int pause); @ drivers/net/ethernet/chelsio/cxgb/cxgb2.c:214 @ static int cxgb_up(struct adapter *adapter) t1_interrupts_clear(adapter); adapter->params.has_msi = !disable_msi && !pci_enable_msi(adapter->pdev); - err = request_irq(adapter->pdev->irq, t1_interrupt, - adapter->params.has_msi ? 0 : IRQF_SHARED, - adapter->name, adapter); + err = request_threaded_irq(adapter->pdev->irq, t1_interrupt, + t1_interrupt_thread, + adapter->params.has_msi ? 0 : IRQF_SHARED, + adapter->name, adapter); if (err) { if (adapter->params.has_msi) pci_disable_msi(adapter->pdev); @ drivers/net/ethernet/chelsio/cxgb/cxgb2.c:920 @ static void mac_stats_task(struct work_struct *work) spin_unlock(&adapter->work_lock); } -/* - * Processes elmer0 external interrupts in process context. - */ -static void ext_intr_task(struct work_struct *work) -{ - struct adapter *adapter = - container_of(work, struct adapter, ext_intr_handler_task); - - t1_elmer0_ext_intr_handler(adapter); - - /* Now reenable external interrupts */ - spin_lock_irq(&adapter->async_lock); - adapter->slow_intr_mask |= F_PL_INTR_EXT; - writel(F_PL_INTR_EXT, adapter->regs + A_PL_CAUSE); - writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA, - adapter->regs + A_PL_ENABLE); - spin_unlock_irq(&adapter->async_lock); -} - -/* - * Interrupt-context handler for elmer0 external interrupts. - */ -void t1_elmer0_ext_intr(struct adapter *adapter) -{ - /* - * Schedule a task to handle external interrupts as we require - * a process context. We disable EXT interrupts in the interim - * and let the task reenable them when it's done. - */ - adapter->slow_intr_mask &= ~F_PL_INTR_EXT; - writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA, - adapter->regs + A_PL_ENABLE); - schedule_work(&adapter->ext_intr_handler_task); -} - -void t1_fatal_err(struct adapter *adapter) -{ - if (adapter->flags & FULL_INIT_DONE) { - t1_sge_stop(adapter->sge); - t1_interrupts_disable(adapter); - } - pr_alert("%s: encountered fatal error, operation suspended\n", - adapter->name); -} - static const struct net_device_ops cxgb_netdev_ops = { .ndo_open = cxgb_open, .ndo_stop = cxgb_close, @ drivers/net/ethernet/chelsio/cxgb/cxgb2.c:1021 @ static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) spin_lock_init(&adapter->async_lock); spin_lock_init(&adapter->mac_lock); - INIT_WORK(&adapter->ext_intr_handler_task, - ext_intr_task); INIT_DELAYED_WORK(&adapter->stats_update_task, mac_stats_task); @ drivers/net/ethernet/chelsio/cxgb/sge.c:943 @ void t1_sge_intr_clear(struct sge *sge) /* * SGE 'Error' interrupt handler */ -int t1_sge_intr_error_handler(struct sge *sge) +bool t1_sge_intr_error_handler(struct sge *sge) { struct adapter *adapter = sge->adapter; u32 cause = readl(adapter->regs + A_SG_INT_CAUSE); + bool wake = false; if (adapter->port[0].dev->hw_features & NETIF_F_TSO) cause &= ~F_PACKET_TOO_BIG; @ drivers/net/ethernet/chelsio/cxgb/sge.c:971 @ int t1_sge_intr_error_handler(struct sge *sge) sge->stats.pkt_mismatch++; pr_alert("%s: SGE packet mismatch\n", adapter->name); } - if (cause & SGE_INT_FATAL) - t1_fatal_err(adapter); + if (cause & SGE_INT_FATAL) { + t1_interrupts_disable(adapter); + adapter->pending_thread_intr |= F_PL_INTR_SGE_ERR; + wake = true; + } writel(cause, adapter->regs + A_SG_INT_CAUSE); - return 0; + return wake; } const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge) @ drivers/net/ethernet/chelsio/cxgb/sge.c:1626 @ int t1_poll(struct napi_struct *napi, int budget) return work_done; } +irqreturn_t t1_interrupt_thread(int irq, void *data) +{ + struct adapter *adapter = data; + u32 pending_thread_intr; + + spin_lock_irq(&adapter->async_lock); + pending_thread_intr = adapter->pending_thread_intr; + adapter->pending_thread_intr = 0; + spin_unlock_irq(&adapter->async_lock); + + if (!pending_thread_intr) + return IRQ_NONE; + + if (pending_thread_intr & F_PL_INTR_EXT) + t1_elmer0_ext_intr_handler(adapter); + + /* This error is fatal, interrupts remain off */ + if (pending_thread_intr & F_PL_INTR_SGE_ERR) { + pr_alert("%s: encountered fatal error, operation suspended\n", + adapter->name); + t1_sge_stop(adapter->sge); + return IRQ_HANDLED; + } + + spin_lock_irq(&adapter->async_lock); + adapter->slow_intr_mask |= F_PL_INTR_EXT; + + writel(F_PL_INTR_EXT, adapter->regs + A_PL_CAUSE); + writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA, + adapter->regs + A_PL_ENABLE); + spin_unlock_irq(&adapter->async_lock); + + return IRQ_HANDLED; +} + irqreturn_t t1_interrupt(int irq, void *data) { struct adapter *adapter = data; struct sge *sge = adapter->sge; - int handled; + irqreturn_t handled; if (likely(responses_pending(adapter))) { writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE); @ drivers/net/ethernet/chelsio/cxgb/sge.c:1687 @ irqreturn_t t1_interrupt(int irq, void *data) handled = t1_slow_intr_handler(adapter); spin_unlock(&adapter->async_lock); - if (!handled) + if (handled == IRQ_NONE) sge->stats.unhandled_irqs++; - return IRQ_RETVAL(handled != 0); + return handled; } /* @ drivers/net/ethernet/chelsio/cxgb/sge.h:77 @ struct sge *t1_sge_create(struct adapter *, struct sge_params *); int t1_sge_configure(struct sge *, struct sge_params *); int t1_sge_set_coalesce_params(struct sge *, struct sge_params *); void t1_sge_destroy(struct sge *); +irqreturn_t t1_interrupt_thread(int irq, void *data); irqreturn_t t1_interrupt(int irq, void *cookie); int t1_poll(struct napi_struct *, int); @ drivers/net/ethernet/chelsio/cxgb/sge.h:85 @ netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev); void t1_vlan_mode(struct adapter *adapter, netdev_features_t features); void t1_sge_start(struct sge *); void t1_sge_stop(struct sge *); -int t1_sge_intr_error_handler(struct sge *); +bool t1_sge_intr_error_handler(struct sge *sge); void t1_sge_intr_enable(struct sge *); void t1_sge_intr_disable(struct sge *); void t1_sge_intr_clear(struct sge *); @ drivers/net/ethernet/chelsio/cxgb/subr.c:173 @ void t1_link_changed(adapter_t *adapter, int port_id) t1_link_negotiated(adapter, port_id, link_ok, speed, duplex, fc); } -static int t1_pci_intr_handler(adapter_t *adapter) +static bool t1_pci_intr_handler(adapter_t *adapter) { u32 pcix_cause; @ drivers/net/ethernet/chelsio/cxgb/subr.c:182 @ static int t1_pci_intr_handler(adapter_t *adapter) if (pcix_cause) { pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, pcix_cause); - t1_fatal_err(adapter); /* PCI errors are fatal */ + /* PCI errors are fatal */ + t1_interrupts_disable(adapter); + adapter->pending_thread_intr |= F_PL_INTR_SGE_ERR; + pr_alert("%s: PCI error encountered.\n", adapter->name); + return true; } - return 0; + return false; } #ifdef CONFIG_CHELSIO_T1_1G @ drivers/net/ethernet/chelsio/cxgb/subr.c:217 @ static int fpga_phy_intr_handler(adapter_t *adapter) /* * Slow path interrupt handler for FPGAs. */ -static int fpga_slow_intr(adapter_t *adapter) +static irqreturn_t fpga_slow_intr(adapter_t *adapter) { u32 cause = readl(adapter->regs + A_PL_CAUSE); + irqreturn_t ret = IRQ_NONE; cause &= ~F_PL_INTR_SGE_DATA; - if (cause & F_PL_INTR_SGE_ERR) - t1_sge_intr_error_handler(adapter->sge); + if (cause & F_PL_INTR_SGE_ERR) { + if (t1_sge_intr_error_handler(adapter->sge)) + ret = IRQ_WAKE_THREAD; + } if (cause & FPGA_PCIX_INTERRUPT_GMAC) fpga_phy_intr_handler(adapter); @ drivers/net/ethernet/chelsio/cxgb/subr.c:241 @ static int fpga_slow_intr(adapter_t *adapter) /* Clear TP interrupt */ writel(tp_cause, adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE); } - if (cause & FPGA_PCIX_INTERRUPT_PCIX) - t1_pci_intr_handler(adapter); + if (cause & FPGA_PCIX_INTERRUPT_PCIX) { + if (t1_pci_intr_handler(adapter)) + ret = IRQ_WAKE_THREAD; + } /* Clear the interrupts just processed. */ if (cause) writel(cause, adapter->regs + A_PL_CAUSE); - return cause != 0; + if (ret != IRQ_NONE) + return ret; + + return cause == 0 ? IRQ_NONE : IRQ_HANDLED; } #endif @ drivers/net/ethernet/chelsio/cxgb/subr.c:857 @ void t1_interrupts_clear(adapter_t* adapter) /* * Slow path interrupt handler for ASICs. */ -static int asic_slow_intr(adapter_t *adapter) +static irqreturn_t asic_slow_intr(adapter_t *adapter) { u32 cause = readl(adapter->regs + A_PL_CAUSE); + irqreturn_t ret = IRQ_HANDLED; cause &= adapter->slow_intr_mask; if (!cause) - return 0; - if (cause & F_PL_INTR_SGE_ERR) - t1_sge_intr_error_handler(adapter->sge); + return IRQ_NONE; + if (cause & F_PL_INTR_SGE_ERR) { + if (t1_sge_intr_error_handler(adapter->sge)) + ret = IRQ_WAKE_THREAD; + } if (cause & F_PL_INTR_TP) t1_tp_intr_handler(adapter->tp); if (cause & F_PL_INTR_ESPI) t1_espi_intr_handler(adapter->espi); - if (cause & F_PL_INTR_PCIX) - t1_pci_intr_handler(adapter); - if (cause & F_PL_INTR_EXT) - t1_elmer0_ext_intr(adapter); + if (cause & F_PL_INTR_PCIX) { + if (t1_pci_intr_handler(adapter)) + ret = IRQ_WAKE_THREAD; + } + if (cause & F_PL_INTR_EXT) { + /* Wake the threaded interrupt to handle external interrupts as + * we require a process context. We disable EXT interrupts in + * the interim and let the thread reenable them when it's done. + */ + adapter->pending_thread_intr |= F_PL_INTR_EXT; + adapter->slow_intr_mask &= ~F_PL_INTR_EXT; + writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA, + adapter->regs + A_PL_ENABLE); + ret = IRQ_WAKE_THREAD; + } /* Clear the interrupts just processed. */ writel(cause, adapter->regs + A_PL_CAUSE); readl(adapter->regs + A_PL_CAUSE); /* flush writes */ - return 1; + return ret; } -int t1_slow_intr_handler(adapter_t *adapter) +irqreturn_t t1_slow_intr_handler(adapter_t *adapter) { #ifdef CONFIG_CHELSIO_T1_1G if (!t1_is_asic(adapter)) @ drivers/net/ethernet/dlink/sundance.c:966 @ static void tx_timeout(struct net_device *dev, unsigned int txqueue) unsigned long flag; netif_stop_queue(dev); - tasklet_disable(&np->tx_tasklet); + tasklet_disable_in_atomic(&np->tx_tasklet); iowrite16(0, ioaddr + IntrEnable); printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x " "TxFrameId %2.2x," @ drivers/net/ethernet/jme.c:1268 @ jme_stop_shutdown_timer(struct jme_adapter *jme) jwrite32f(jme, JME_APMC, apmc); } -static void jme_link_change_tasklet(struct tasklet_struct *t) +static void jme_link_change_work(struct work_struct *work) { - struct jme_adapter *jme = from_tasklet(jme, t, linkch_task); + struct jme_adapter *jme = container_of(work, struct jme_adapter, linkch_task); struct net_device *netdev = jme->dev; int rc; @ drivers/net/ethernet/jme.c:1513 @ jme_intr_msi(struct jme_adapter *jme, u32 intrstat) * all other events are ignored */ jwrite32(jme, JME_IEVE, intrstat); - tasklet_schedule(&jme->linkch_task); + schedule_work(&jme->linkch_task); goto out_reenable; } @ drivers/net/ethernet/jme.c:1835 @ jme_open(struct net_device *netdev) jme_clear_pm_disable_wol(jme); JME_NAPI_ENABLE(jme); - tasklet_setup(&jme->linkch_task, jme_link_change_tasklet); tasklet_setup(&jme->txclean_task, jme_tx_clean_tasklet); tasklet_setup(&jme->rxclean_task, jme_rx_clean_tasklet); tasklet_setup(&jme->rxempty_task, jme_rx_empty_tasklet); @ drivers/net/ethernet/jme.c:1922 @ jme_close(struct net_device *netdev) JME_NAPI_DISABLE(jme); - tasklet_kill(&jme->linkch_task); + cancel_work_sync(&jme->linkch_task); tasklet_kill(&jme->txclean_task); tasklet_kill(&jme->rxclean_task); tasklet_kill(&jme->rxempty_task); @ drivers/net/ethernet/jme.c:3037 @ jme_init_one(struct pci_dev *pdev, atomic_set(&jme->rx_empty, 1); tasklet_setup(&jme->pcc_task, jme_pcc_tasklet); + INIT_WORK(&jme->linkch_task, jme_link_change_work); jme->dpi.cur = PCC_P1; jme->reg_ghc = 0; @ drivers/net/ethernet/jme.h:414 @ struct jme_adapter { struct tasklet_struct rxempty_task; struct tasklet_struct rxclean_task; struct tasklet_struct txclean_task; - struct tasklet_struct linkch_task; + struct work_struct linkch_task; struct tasklet_struct pcc_task; unsigned long flags; u32 reg_txcs; @ drivers/net/wireless/ath/ath9k/beacon.c:254 @ void ath9k_beacon_ensure_primary_slot(struct ath_softc *sc) int first_slot = ATH_BCBUF; int slot; - tasklet_disable(&sc->bcon_tasklet); + tasklet_disable_in_atomic(&sc->bcon_tasklet); /* Find first taken slot. */ for (slot = 0; slot < ATH_BCBUF; slot++) { @ drivers/pci/controller/pci-hyperv.c:1460 @ static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) * Prevents hv_pci_onchannelcallback() from running concurrently * in the tasklet. */ - tasklet_disable(&channel->callback_event); + tasklet_disable_in_atomic(&channel->callback_event); /* * Since this function is called with IRQ locks held, can't @ drivers/scsi/fcoe/fcoe.c:1455 @ static int fcoe_rcv(struct sk_buff *skb, struct net_device *netdev, static int fcoe_alloc_paged_crc_eof(struct sk_buff *skb, int tlen) { struct fcoe_percpu_s *fps; - int rc; + int rc, cpu = get_cpu_light(); - fps = &get_cpu_var(fcoe_percpu); + fps = &per_cpu(fcoe_percpu, cpu); rc = fcoe_get_paged_crc_eof(skb, tlen, fps); - put_cpu_var(fcoe_percpu); + put_cpu_light(); return rc; } @ drivers/scsi/fcoe/fcoe.c:1644 @ static inline int fcoe_filter_frames(struct fc_lport *lport, return 0; } - stats = per_cpu_ptr(lport->stats, get_cpu()); + stats = per_cpu_ptr(lport->stats, get_cpu_light()); stats->InvalidCRCCount++; if (stats->InvalidCRCCount < 5) printk(KERN_WARNING "fcoe: dropping frame with CRC error\n"); - put_cpu(); + put_cpu_light(); return -EINVAL; } @ drivers/scsi/fcoe/fcoe.c:1689 @ static void fcoe_recv_frame(struct sk_buff *skb) */ hp = (struct fcoe_hdr *) skb_network_header(skb); - stats = per_cpu_ptr(lport->stats, get_cpu()); + stats = per_cpu_ptr(lport->stats, get_cpu_light()); if (unlikely(FC_FCOE_DECAPS_VER(hp) != FC_FCOE_VER)) { if (stats->ErrorFrames < 5) printk(KERN_WARNING "fcoe: FCoE version " @ drivers/scsi/fcoe/fcoe.c:1721 @ static void fcoe_recv_frame(struct sk_buff *skb) goto drop; if (!fcoe_filter_frames(lport, fp)) { - put_cpu(); + put_cpu_light(); fc_exch_recv(lport, fp); return; } drop: stats->ErrorFrames++; - put_cpu(); + put_cpu_light(); kfree_skb(skb); } @ drivers/scsi/fcoe/fcoe_ctlr.c:831 @ static unsigned long fcoe_ctlr_age_fcfs(struct fcoe_ctlr *fip) INIT_LIST_HEAD(&del_list); - stats = per_cpu_ptr(fip->lp->stats, get_cpu()); + stats = per_cpu_ptr(fip->lp->stats, get_cpu_light()); list_for_each_entry_safe(fcf, next, &fip->fcfs, list) { deadline = fcf->time + fcf->fka_period + fcf->fka_period / 2; @ drivers/scsi/fcoe/fcoe_ctlr.c:867 @ static unsigned long fcoe_ctlr_age_fcfs(struct fcoe_ctlr *fip) sel_time = fcf->time; } } - put_cpu(); + put_cpu_light(); list_for_each_entry_safe(fcf, next, &del_list, list) { /* Removes fcf from current list */ @ drivers/scsi/libfc/fc_exch.c:829 @ static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport, } memset(ep, 0, sizeof(*ep)); - cpu = get_cpu(); + cpu = get_cpu_light(); pool = per_cpu_ptr(mp->pool, cpu); spin_lock_bh(&pool->lock); - put_cpu(); + put_cpu_light(); /* peek cache of free slot */ if (pool->left != FC_XID_UNKNOWN) { @ drivers/tty/serial/8250/8250.h:134 @ static inline void serial_dl_write(struct uart_8250_port *up, int value) up->dl_write(up, value); } +static inline void serial8250_set_IER(struct uart_8250_port *up, + unsigned char ier) +{ + struct uart_port *port = &up->port; + unsigned int flags; + bool is_console; + + is_console = uart_console(port); + + if (is_console) + console_atomic_lock(&flags); + + serial_out(up, UART_IER, ier); + + if (is_console) + console_atomic_unlock(flags); +} + +static inline unsigned char serial8250_clear_IER(struct uart_8250_port *up) +{ + struct uart_port *port = &up->port; + unsigned int clearval = 0; + unsigned int prior; + unsigned int flags; + bool is_console; + + is_console = uart_console(port); + + if (up->capabilities & UART_CAP_UUE) + clearval = UART_IER_UUE; + + if (is_console) + console_atomic_lock(&flags); + + prior = serial_port_in(port, UART_IER); + serial_port_out(port, UART_IER, clearval); + + if (is_console) + console_atomic_unlock(flags); + + return prior; +} + static inline bool serial8250_set_THRI(struct uart_8250_port *up) { if (up->ier & UART_IER_THRI) return false; up->ier |= UART_IER_THRI; - serial_out(up, UART_IER, up->ier); + serial8250_set_IER(up, up->ier); return true; } @ drivers/tty/serial/8250/8250.h:191 @ static inline bool serial8250_clear_THRI(struct uart_8250_port *up) if (!(up->ier & UART_IER_THRI)) return false; up->ier &= ~UART_IER_THRI; - serial_out(up, UART_IER, up->ier); + serial8250_set_IER(up, up->ier); return true; } @ drivers/tty/serial/8250/8250_core.c:277 @ static void serial8250_backup_timeout(struct timer_list *t) * Must disable interrupts or else we risk racing with the interrupt * based handler. */ - if (up->port.irq) { - ier = serial_in(up, UART_IER); - serial_out(up, UART_IER, 0); - } + if (up->port.irq) + ier = serial8250_clear_IER(up); iir = serial_in(up, UART_IIR); @ drivers/tty/serial/8250/8250_core.c:301 @ static void serial8250_backup_timeout(struct timer_list *t) serial8250_tx_chars(up); if (up->port.irq) - serial_out(up, UART_IER, ier); + serial8250_set_IER(up, ier); spin_unlock_irqrestore(&up->port.lock, flags); @ drivers/tty/serial/8250/8250_core.c:579 @ serial8250_register_ports(struct uart_driver *drv, struct device *dev) #ifdef CONFIG_SERIAL_8250_CONSOLE +static void univ8250_console_write_atomic(struct console *co, const char *s, + unsigned int count) +{ + struct uart_8250_port *up = &serial8250_ports[co->index]; + + serial8250_console_write_atomic(up, s, count); +} + static void univ8250_console_write(struct console *co, const char *s, unsigned int count) { @ drivers/tty/serial/8250/8250_core.c:680 @ static int univ8250_console_match(struct console *co, char *name, int idx, static struct console univ8250_console = { .name = "ttyS", + .write_atomic = univ8250_console_write_atomic, .write = univ8250_console_write, .device = uart_console_device, .setup = univ8250_console_setup, @ drivers/tty/serial/8250/8250_fsl.c:63 @ int fsl8250_handle_irq(struct uart_port *port) /* Stop processing interrupts on input overrun */ if ((orig_lsr & UART_LSR_OE) && (up->overrun_backoff_time_ms > 0)) { + unsigned int ca_flags; unsigned long delay; + bool is_console; + is_console = uart_console(port); + + if (is_console) + console_atomic_lock(&ca_flags); up->ier = port->serial_in(port, UART_IER); + if (is_console) + console_atomic_unlock(ca_flags); + if (up->ier & (UART_IER_RLSI | UART_IER_RDI)) { port->ops->stop_rx(port); } else { @ drivers/tty/serial/8250/8250_ingenic.c:149 @ OF_EARLYCON_DECLARE(x1000_uart, "ingenic,x1000-uart", static void ingenic_uart_serial_out(struct uart_port *p, int offset, int value) { + unsigned int flags; + bool is_console; int ier; switch (offset) { @ drivers/tty/serial/8250/8250_ingenic.c:172 @ static void ingenic_uart_serial_out(struct uart_port *p, int offset, int value) * If we have enabled modem status IRQs we should enable * modem mode. */ + is_console = uart_console(p); + if (is_console) + console_atomic_lock(&flags); ier = p->serial_in(p, UART_IER); + if (is_console) + console_atomic_unlock(flags); if (ier & UART_IER_MSI) value |= UART_MCR_MDCE | UART_MCR_FCM; @ drivers/tty/serial/8250/8250_mtk.c:221 @ static void mtk8250_shutdown(struct uart_port *port) static void mtk8250_disable_intrs(struct uart_8250_port *up, int mask) { - serial_out(up, UART_IER, serial_in(up, UART_IER) & (~mask)); + struct uart_port *port = &up->port; + unsigned int flags; + unsigned int ier; + bool is_console; + + is_console = uart_console(port); + + if (is_console) + console_atomic_lock(&flags); + + ier = serial_in(up, UART_IER); + serial_out(up, UART_IER, ier & (~mask)); + + if (is_console) + console_atomic_unlock(flags); } static void mtk8250_enable_intrs(struct uart_8250_port *up, int mask) { - serial_out(up, UART_IER, serial_in(up, UART_IER) | mask); + struct uart_port *port = &up->port; + unsigned int flags; + unsigned int ier; + + if (uart_console(port)) + console_atomic_lock(&flags); + + ier = serial_in(up, UART_IER); + serial_out(up, UART_IER, ier | mask); + + if (uart_console(port)) + console_atomic_unlock(flags); } static void mtk8250_set_flow_ctrl(struct uart_8250_port *up, int mode) @ drivers/tty/serial/8250/8250_port.c:765 @ static void serial8250_set_sleep(struct uart_8250_port *p, int sleep) serial_out(p, UART_EFR, UART_EFR_ECB); serial_out(p, UART_LCR, 0); } - serial_out(p, UART_IER, sleep ? UART_IERX_SLEEP : 0); + serial8250_set_IER(p, sleep ? UART_IERX_SLEEP : 0); if (p->capabilities & UART_CAP_EFR) { serial_out(p, UART_LCR, UART_LCR_CONF_MODE_B); serial_out(p, UART_EFR, efr); @ drivers/tty/serial/8250/8250_port.c:1439 @ static void serial8250_stop_rx(struct uart_port *port) up->ier &= ~(UART_IER_RLSI | UART_IER_RDI); up->port.read_status_mask &= ~UART_LSR_DR; - serial_port_out(port, UART_IER, up->ier); + serial8250_set_IER(up, up->ier); serial8250_rpm_put(up); } @ drivers/tty/serial/8250/8250_port.c:1469 @ void serial8250_em485_stop_tx(struct uart_8250_port *p) serial8250_clear_and_reinit_fifos(p); p->ier |= UART_IER_RLSI | UART_IER_RDI; - serial_port_out(&p->port, UART_IER, p->ier); + serial8250_set_IER(p, p->ier); } } EXPORT_SYMBOL_GPL(serial8250_em485_stop_tx); @ drivers/tty/serial/8250/8250_port.c:1697 @ static void serial8250_disable_ms(struct uart_port *port) mctrl_gpio_disable_ms(up->gpios); up->ier &= ~UART_IER_MSI; - serial_port_out(port, UART_IER, up->ier); + serial8250_set_IER(up, up->ier); } static void serial8250_enable_ms(struct uart_port *port) @ drivers/tty/serial/8250/8250_port.c:1713 @ static void serial8250_enable_ms(struct uart_port *port) up->ier |= UART_IER_MSI; serial8250_rpm_get(up); - serial_port_out(port, UART_IER, up->ier); + serial8250_set_IER(up, up->ier); serial8250_rpm_put(up); } @ drivers/tty/serial/8250/8250_port.c:2133 @ static void serial8250_put_poll_char(struct uart_port *port, struct uart_8250_port *up = up_to_u8250p(port); serial8250_rpm_get(up); - /* - * First save the IER then disable the interrupts - */ - ier = serial_port_in(port, UART_IER); - if (up->capabilities & UART_CAP_UUE) - serial_port_out(port, UART_IER, UART_IER_UUE); - else - serial_port_out(port, UART_IER, 0); + ier = serial8250_clear_IER(up); wait_for_xmitr(up, BOTH_EMPTY); /* @ drivers/tty/serial/8250/8250_port.c:2146 @ static void serial8250_put_poll_char(struct uart_port *port, * and restore the IER */ wait_for_xmitr(up, BOTH_EMPTY); - serial_port_out(port, UART_IER, ier); + serial8250_set_IER(up, ier); serial8250_rpm_put(up); } @ drivers/tty/serial/8250/8250_port.c:2449 @ void serial8250_do_shutdown(struct uart_port *port) */ spin_lock_irqsave(&port->lock, flags); up->ier = 0; - serial_port_out(port, UART_IER, 0); + serial8250_set_IER(up, 0); spin_unlock_irqrestore(&port->lock, flags); synchronize_irq(port->irq); @ drivers/tty/serial/8250/8250_port.c:2805 @ serial8250_do_set_termios(struct uart_port *port, struct ktermios *termios, if (up->capabilities & UART_CAP_RTOIE) up->ier |= UART_IER_RTOIE; - serial_port_out(port, UART_IER, up->ier); + serial8250_set_IER(up, up->ier); if (up->capabilities & UART_CAP_EFR) { unsigned char efr = 0; @ drivers/tty/serial/8250/8250_port.c:3271 @ EXPORT_SYMBOL_GPL(serial8250_set_defaults); #ifdef CONFIG_SERIAL_8250_CONSOLE -static void serial8250_console_putchar(struct uart_port *port, int ch) +static void serial8250_console_putchar_locked(struct uart_port *port, int ch) { struct uart_8250_port *up = up_to_u8250p(port); @ drivers/tty/serial/8250/8250_port.c:3279 @ static void serial8250_console_putchar(struct uart_port *port, int ch) serial_port_out(port, UART_TX, ch); } +static void serial8250_console_putchar(struct uart_port *port, int ch) +{ + struct uart_8250_port *up = up_to_u8250p(port); + unsigned int flags; + + wait_for_xmitr(up, UART_LSR_THRE); + + console_atomic_lock(&flags); + serial8250_console_putchar_locked(port, ch); + console_atomic_unlock(flags); +} + /* * Restore serial console when h/w power-off detected */ @ drivers/tty/serial/8250/8250_port.c:3312 @ static void serial8250_console_restore(struct uart_8250_port *up) serial8250_out_MCR(up, UART_MCR_DTR | UART_MCR_RTS); } +void serial8250_console_write_atomic(struct uart_8250_port *up, + const char *s, unsigned int count) +{ + struct uart_port *port = &up->port; + unsigned int flags; + unsigned int ier; + + console_atomic_lock(&flags); + + touch_nmi_watchdog(); + + ier = serial8250_clear_IER(up); + + if (atomic_fetch_inc(&up->console_printing)) { + uart_console_write(port, "\n", 1, + serial8250_console_putchar_locked); + } + uart_console_write(port, s, count, serial8250_console_putchar_locked); + atomic_dec(&up->console_printing); + + wait_for_xmitr(up, BOTH_EMPTY); + serial8250_set_IER(up, ier); + + console_atomic_unlock(flags); +} + /* * Print a string to the serial port trying not to disturb * any possible real use of the port... @ drivers/tty/serial/8250/8250_port.c:3354 @ void serial8250_console_write(struct uart_8250_port *up, const char *s, struct uart_port *port = &up->port; unsigned long flags; unsigned int ier; - int locked = 1; touch_nmi_watchdog(); - if (oops_in_progress) - locked = spin_trylock_irqsave(&port->lock, flags); - else - spin_lock_irqsave(&port->lock, flags); - - /* - * First save the IER then disable the interrupts - */ - ier = serial_port_in(port, UART_IER); + spin_lock_irqsave(&port->lock, flags); - if (up->capabilities & UART_CAP_UUE) - serial_port_out(port, UART_IER, UART_IER_UUE); - else - serial_port_out(port, UART_IER, 0); + ier = serial8250_clear_IER(up); /* check scratch reg to see if port powered off during system sleep */ if (up->canary && (up->canary != serial_port_in(port, UART_SCR))) { @ drivers/tty/serial/8250/8250_port.c:3373 @ void serial8250_console_write(struct uart_8250_port *up, const char *s, mdelay(port->rs485.delay_rts_before_send); } + atomic_inc(&up->console_printing); uart_console_write(port, s, count, serial8250_console_putchar); + atomic_dec(&up->console_printing); /* * Finally, wait for transmitter to become empty @ drivers/tty/serial/8250/8250_port.c:3388 @ void serial8250_console_write(struct uart_8250_port *up, const char *s, if (em485->tx_stopped) up->rs485_stop_tx(up); } - - serial_port_out(port, UART_IER, ier); + serial8250_set_IER(up, ier); /* * The receive handling will happen properly because the @ drivers/tty/serial/8250/8250_port.c:3400 @ void serial8250_console_write(struct uart_8250_port *up, const char *s, if (up->msr_saved_flags) serial8250_modem_status(up); - if (locked) - spin_unlock_irqrestore(&port->lock, flags); + spin_unlock_irqrestore(&port->lock, flags); } static unsigned int probe_baud(struct uart_port *port) @ drivers/tty/serial/8250/8250_port.c:3420 @ static unsigned int probe_baud(struct uart_port *port) int serial8250_console_setup(struct uart_port *port, char *options, bool probe) { + struct uart_8250_port *up = up_to_u8250p(port); int baud = 9600; int bits = 8; int parity = 'n'; @ drivers/tty/serial/8250/8250_port.c:3430 @ int serial8250_console_setup(struct uart_port *port, char *options, bool probe) if (!port->iobase && !port->membase) return -ENODEV; + atomic_set(&up->console_printing, 0); + if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); else if (probe) @ drivers/tty/serial/amba-pl011.c:2204 @ pl011_console_write(struct console *co, const char *s, unsigned int count) { struct uart_amba_port *uap = amba_ports[co->index]; unsigned int old_cr = 0, new_cr; - unsigned long flags; + unsigned long flags = 0; int locked = 1; clk_enable(uap->clk); - local_irq_save(flags); + /* + * local_irq_save(flags); + * + * This local_irq_save() is nonsense. If we come in via sysrq + * handling then interrupts are already disabled. Aside of + * that the port.sysrq check is racy on SMP regardless. + */ if (uap->port.sysrq) locked = 0; else if (oops_in_progress) - locked = spin_trylock(&uap->port.lock); + locked = spin_trylock_irqsave(&uap->port.lock, flags); else - spin_lock(&uap->port.lock); + spin_lock_irqsave(&uap->port.lock, flags); /* * First save the CR then disable the interrupts @ drivers/tty/serial/amba-pl011.c:2247 @ pl011_console_write(struct console *co, const char *s, unsigned int count) pl011_write(old_cr, uap, REG_CR); if (locked) - spin_unlock(&uap->port.lock); - local_irq_restore(flags); + spin_unlock_irqrestore(&uap->port.lock, flags); clk_disable(uap->clk); } @ drivers/tty/serial/omap-serial.c:1314 @ serial_omap_console_write(struct console *co, const char *s, pm_runtime_get_sync(up->dev); - local_irq_save(flags); - if (up->port.sysrq) - locked = 0; - else if (oops_in_progress) - locked = spin_trylock(&up->port.lock); + if (up->port.sysrq || oops_in_progress) + locked = spin_trylock_irqsave(&up->port.lock, flags); else - spin_lock(&up->port.lock); + spin_lock_irqsave(&up->port.lock, flags); /* * First save the IER then disable the interrupts @ drivers/tty/serial/omap-serial.c:1346 @ serial_omap_console_write(struct console *co, const char *s, pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); if (locked) - spin_unlock(&up->port.lock); - local_irq_restore(flags); + spin_unlock_irqrestore(&up->port.lock, flags); } static int __init @ fs/afs/dir_silly.c:242 @ int afs_silly_iput(struct dentry *dentry, struct inode *inode) struct dentry *alias; int ret; - DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); + DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(wq); _enter("%p{%pd},%llx", dentry, dentry, vnode->fid.vnode); @ fs/aio.c:46 @ #include <linux/mount.h> #include <linux/pseudo_fs.h> -#include <asm/kmap_types.h> #include <linux/uaccess.h> #include <linux/nospec.h> @ fs/btrfs/ctree.h:20 @ #include <linux/wait.h> #include <linux/slab.h> #include <trace/events/btrfs.h> -#include <asm/kmap_types.h> #include <asm/unaligned.h> #include <linux/pagemap.h> #include <linux/btrfs.h> @ fs/cifs/readdir.c:84 @ cifs_prime_dcache(struct dentry *parent, struct qstr *name, struct inode *inode; struct super_block *sb = parent->d_sb; struct cifs_sb_info *cifs_sb = CIFS_SB(sb); - DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); + DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(wq); cifs_dbg(FYI, "%s: for %s\n", __func__, name->name); @ fs/dcache.c:2506 @ EXPORT_SYMBOL(d_rehash); static inline unsigned start_dir_add(struct inode *dir) { + preempt_disable_rt(); for (;;) { - unsigned n = dir->i_dir_seq; - if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) + unsigned n = dir->__i_dir_seq; + if (!(n & 1) && cmpxchg(&dir->__i_dir_seq, n, n + 1) == n) return n; cpu_relax(); } @ fs/dcache.c:2517 @ static inline unsigned start_dir_add(struct inode *dir) static inline void end_dir_add(struct inode *dir, unsigned n) { - smp_store_release(&dir->i_dir_seq, n + 2); + smp_store_release(&dir->__i_dir_seq, n + 2); + preempt_enable_rt(); } static void d_wait_lookup(struct dentry *dentry) { - if (d_in_lookup(dentry)) { - DECLARE_WAITQUEUE(wait, current); - add_wait_queue(dentry->d_wait, &wait); - do { - set_current_state(TASK_UNINTERRUPTIBLE); - spin_unlock(&dentry->d_lock); - schedule(); - spin_lock(&dentry->d_lock); - } while (d_in_lookup(dentry)); - } + struct swait_queue __wait; + + if (!d_in_lookup(dentry)) + return; + + INIT_LIST_HEAD(&__wait.task_list); + do { + prepare_to_swait_exclusive(dentry->d_wait, &__wait, TASK_UNINTERRUPTIBLE); + spin_unlock(&dentry->d_lock); + schedule(); + spin_lock(&dentry->d_lock); + } while (d_in_lookup(dentry)); + finish_swait(dentry->d_wait, &__wait); } struct dentry *d_alloc_parallel(struct dentry *parent, const struct qstr *name, - wait_queue_head_t *wq) + struct swait_queue_head *wq) { unsigned int hash = name->hash; struct hlist_bl_head *b = in_lookup_hash(parent, hash); @ fs/dcache.c:2554 @ struct dentry *d_alloc_parallel(struct dentry *parent, retry: rcu_read_lock(); - seq = smp_load_acquire(&parent->d_inode->i_dir_seq); + seq = smp_load_acquire(&parent->d_inode->__i_dir_seq); r_seq = read_seqbegin(&rename_lock); dentry = __d_lookup_rcu(parent, name, &d_seq); if (unlikely(dentry)) { @ fs/dcache.c:2582 @ struct dentry *d_alloc_parallel(struct dentry *parent, } hlist_bl_lock(b); - if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { + if (unlikely(READ_ONCE(parent->d_inode->__i_dir_seq) != seq)) { hlist_bl_unlock(b); rcu_read_unlock(); goto retry; @ fs/dcache.c:2655 @ void __d_lookup_done(struct dentry *dentry) hlist_bl_lock(b); dentry->d_flags &= ~DCACHE_PAR_LOOKUP; __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); - wake_up_all(dentry->d_wait); + swake_up_all(dentry->d_wait); dentry->d_wait = NULL; hlist_bl_unlock(b); INIT_HLIST_NODE(&dentry->d_u.d_alias); @ fs/fscache/internal.h:98 @ extern unsigned fscache_debug; extern struct kobject *fscache_root; extern struct workqueue_struct *fscache_object_wq; extern struct workqueue_struct *fscache_op_wq; -DECLARE_PER_CPU(wait_queue_head_t, fscache_object_cong_wait); extern unsigned int fscache_hash(unsigned int salt, unsigned int *data, unsigned int n); @ fs/fscache/main.c:44 @ struct kobject *fscache_root; struct workqueue_struct *fscache_object_wq; struct workqueue_struct *fscache_op_wq; -DEFINE_PER_CPU(wait_queue_head_t, fscache_object_cong_wait); - /* these values serve as lower bounds, will be adjusted in fscache_init() */ static unsigned fscache_object_max_active = 4; static unsigned fscache_op_max_active = 2; @ fs/fscache/main.c:139 @ unsigned int fscache_hash(unsigned int salt, unsigned int *data, unsigned int n) static int __init fscache_init(void) { unsigned int nr_cpus = num_possible_cpus(); - unsigned int cpu; int ret; fscache_object_max_active = @ fs/fscache/main.c:161 @ static int __init fscache_init(void) if (!fscache_op_wq) goto error_op_wq; - for_each_possible_cpu(cpu) - init_waitqueue_head(&per_cpu(fscache_object_cong_wait, cpu)); - ret = fscache_proc_init(); if (ret < 0) goto error_proc; @ fs/fscache/object.c:810 @ void fscache_object_destroy(struct fscache_object *object) } EXPORT_SYMBOL(fscache_object_destroy); +static DECLARE_WAIT_QUEUE_HEAD(fscache_object_cong_wait); + /* * enqueue an object for metadata-type processing */ @ fs/fscache/object.c:820 @ void fscache_enqueue_object(struct fscache_object *object) _enter("{OBJ%x}", object->debug_id); if (fscache_get_object(object, fscache_obj_get_queue) >= 0) { - wait_queue_head_t *cong_wq = - &get_cpu_var(fscache_object_cong_wait); if (queue_work(fscache_object_wq, &object->work)) { if (fscache_object_congested()) - wake_up(cong_wq); + wake_up(&fscache_object_cong_wait); } else fscache_put_object(object, fscache_obj_put_queue); - - put_cpu_var(fscache_object_cong_wait); } } @ fs/fscache/object.c:843 @ void fscache_enqueue_object(struct fscache_object *object) */ bool fscache_object_sleep_till_congested(signed long *timeoutp) { - wait_queue_head_t *cong_wq = this_cpu_ptr(&fscache_object_cong_wait); DEFINE_WAIT(wait); if (fscache_object_congested()) return true; - add_wait_queue_exclusive(cong_wq, &wait); + add_wait_queue_exclusive(&fscache_object_cong_wait, &wait); if (!fscache_object_congested()) *timeoutp = schedule_timeout(*timeoutp); - finish_wait(cong_wq, &wait); + finish_wait(&fscache_object_cong_wait, &wait); return fscache_object_congested(); } @ fs/fuse/readdir.c:161 @ static int fuse_direntplus_link(struct file *file, struct inode *dir = d_inode(parent); struct fuse_conn *fc; struct inode *inode; - DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); + DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(wq); if (!o->nodeid) { /* @ fs/inode.c:161 @ int inode_init_always(struct super_block *sb, struct inode *inode) inode->i_bdev = NULL; inode->i_cdev = NULL; inode->i_link = NULL; - inode->i_dir_seq = 0; + inode->__i_dir_seq = 0; inode->i_rdev = 0; inode->dirtied_when = 0; @ fs/namei.c:1523 @ static struct dentry *__lookup_slow(const struct qstr *name, { struct dentry *dentry, *old; struct inode *inode = dir->d_inode; - DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); + DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(wq); /* Don't go there if it's already dead */ if (unlikely(IS_DEADDIR(inode))) @ fs/namei.c:3017 @ static struct dentry *lookup_open(struct nameidata *nd, struct file *file, struct dentry *dentry; int error, create_error = 0; umode_t mode = op->mode; - DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); + DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(wq); if (unlikely(IS_DEADDIR(dir_inode))) return ERR_PTR(-ENOENT); @ fs/namespace.c:17 @ #include <linux/mnt_namespace.h> #include <linux/user_namespace.h> #include <linux/namei.h> +#include <linux/delay.h> #include <linux/security.h> #include <linux/cred.h> #include <linux/idr.h> @ fs/namespace.c:325 @ int __mnt_want_write(struct vfsmount *m) * incremented count after it has set MNT_WRITE_HOLD. */ smp_mb(); - while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) - cpu_relax(); + while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { + preempt_enable(); + cpu_chill(); + preempt_disable(); + } /* * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will * be set to match its requirements. So we must not load that until @ fs/nfs/dir.c:487 @ void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, unsigned long dir_verifier) { struct qstr filename = QSTR_INIT(entry->name, entry->len); - DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); + DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(wq); struct dentry *dentry; struct dentry *alias; struct inode *inode; @ fs/nfs/dir.c:1673 @ int nfs_atomic_open(struct inode *dir, struct dentry *dentry, struct file *file, unsigned open_flags, umode_t mode) { - DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); + DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(wq); struct nfs_open_context *ctx; struct dentry *res; struct iattr attr = { .ia_valid = ATTR_OPEN }; @ fs/nfs/unlink.c:16 @ #include <linux/sunrpc/clnt.h> #include <linux/nfs_fs.h> #include <linux/sched.h> -#include <linux/wait.h> +#include <linux/swait.h> #include <linux/namei.h> #include <linux/fsnotify.h> @ fs/nfs/unlink.c:183 @ nfs_async_unlink(struct dentry *dentry, const struct qstr *name) data->cred = get_current_cred(); data->res.dir_attr = &data->dir_attr; - init_waitqueue_head(&data->wq); + init_swait_queue_head(&data->wq); status = -EBUSY; spin_lock(&dentry->d_lock); @ fs/proc/array.c:387 @ static inline void task_context_switch_counts(struct seq_file *m, static void task_cpus_allowed(struct seq_file *m, struct task_struct *task) { seq_printf(m, "Cpus_allowed:\t%*pb\n", - cpumask_pr_args(task->cpus_ptr)); + cpumask_pr_args(&task->cpus_mask)); seq_printf(m, "Cpus_allowed_list:\t%*pbl\n", - cpumask_pr_args(task->cpus_ptr)); + cpumask_pr_args(&task->cpus_mask)); } static inline void task_core_dumping(struct seq_file *m, struct mm_struct *mm) @ fs/proc/base.c:99 @ #include <linux/posix-timers.h> #include <linux/time_namespace.h> #include <linux/resctrl.h> +#include <linux/swait.h> #include <trace/events/oom.h> #include "internal.h" #include "fd.h" @ fs/proc/base.c:2042 @ bool proc_fill_cache(struct file *file, struct dir_context *ctx, child = d_hash_and_lookup(dir, &qname); if (!child) { - DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); + DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(wq); child = d_alloc_parallel(dir, &qname, &wq); if (IS_ERR(child)) goto end_instantiate; @ fs/proc/proc_sysctl.c:686 @ static bool proc_sys_fill_cache(struct file *file, child = d_lookup(dir, &qname); if (!child) { - DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); + DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(wq); child = d_alloc_parallel(dir, &qname, &wq); if (IS_ERR(child)) return false; @ fs/pstore/platform.c:386 @ void pstore_record_init(struct pstore_record *record, * end of the buffer. */ static void pstore_dump(struct kmsg_dumper *dumper, - enum kmsg_dump_reason reason) + enum kmsg_dump_reason reason, + struct kmsg_dumper_iter *iter) { unsigned long total = 0; const char *why; @ fs/pstore/platform.c:439 @ static void pstore_dump(struct kmsg_dumper *dumper, dst_size -= header_size; /* Write dump contents. */ - if (!kmsg_dump_get_buffer(dumper, true, dst + header_size, + if (!kmsg_dump_get_buffer(iter, true, dst + header_size, dst_size, &dump_size)) break; @ include/asm-generic/Kbuild:33 @ mandatory-y += irq.h mandatory-y += irq_regs.h mandatory-y += irq_work.h mandatory-y += kdebug.h -mandatory-y += kmap_types.h +mandatory-y += kmap_size.h mandatory-y += kprobes.h mandatory-y += linkage.h mandatory-y += local.h @ include/asm-generic/hardirq.h:10 @ typedef struct { unsigned int __softirq_pending; +#ifdef ARCH_WANTS_NMI_IRQSTAT + unsigned int __nmi_count; +#endif } ____cacheline_aligned irq_cpustat_t; -#include <linux/irq_cpustat.h> /* Standard mappings for irq_cpustat_t above */ +DECLARE_PER_CPU_ALIGNED(irq_cpustat_t, irq_stat); + #include <linux/irq.h> #ifndef ack_bad_irq @ include/asm-generic/kmap_size.h:4 @ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef _ASM_GENERIC_KMAP_SIZE_H +#define _ASM_GENERIC_KMAP_SIZE_H + +/* For debug this provides guard pages between the maps */ +#ifdef CONFIG_DEBUG_HIGHMEM +# define KM_MAX_IDX 33 +#else +# define KM_MAX_IDX 16 +#endif + +#endif @ include/asm-generic/kmap_types.h:1 @ -/* SPDX-License-Identifier: GPL-2.0 */ -#ifndef _ASM_GENERIC_KMAP_TYPES_H -#define _ASM_GENERIC_KMAP_TYPES_H - -#ifdef __WITH_KM_FENCE -# define KM_TYPE_NR 41 -#else -# define KM_TYPE_NR 20 -#endif - -#endif @ include/asm-generic/preempt.h:82 @ static __always_inline bool should_resched(int preempt_offset) } #ifdef CONFIG_PREEMPTION +#ifdef CONFIG_PREEMPT_RT +extern void preempt_schedule_lock(void); +#endif extern asmlinkage void preempt_schedule(void); #define __preempt_schedule() preempt_schedule() extern asmlinkage void preempt_schedule_notrace(void); @ include/linux/blkdev.h:164 @ struct request { */ union { struct hlist_node hash; /* merge hash */ - struct list_head ipi_list; + struct llist_node ipi_list; }; /* @ include/linux/bottom_half.h:7 @ #include <linux/preempt.h> -#ifdef CONFIG_TRACE_IRQFLAGS +#if defined(CONFIG_PREEMPT_RT) || defined(CONFIG_TRACE_IRQFLAGS) extern void __local_bh_disable_ip(unsigned long ip, unsigned int cnt); #else static __always_inline void __local_bh_disable_ip(unsigned long ip, unsigned int cnt) @ include/linux/bottom_half.h:35 @ static inline void local_bh_enable(void) __local_bh_enable_ip(_THIS_IP_, SOFTIRQ_DISABLE_OFFSET); } +#ifdef CONFIG_PREEMPT_RT +extern bool local_bh_blocked(void); +#else +static inline bool local_bh_blocked(void) { return false; } +#endif + #endif /* _LINUX_BH_H */ @ include/linux/console.h:19 @ #include <linux/atomic.h> #include <linux/types.h> +#include <linux/printk.h> struct vc_data; struct console_font_op; @ include/linux/console.h:141 @ static inline int con_debug_leave(void) #define CON_ANYTIME (16) /* Safe to call when cpu is offline */ #define CON_BRL (32) /* Used for a braille device */ #define CON_EXTENDED (64) /* Use the extended output format a la /dev/kmsg */ +#define CON_HANDOVER (128) /* Device was previously a boot console. */ struct console { char name[16]; void (*write)(struct console *, const char *, unsigned); + void (*write_atomic)(struct console *co, const char *s, unsigned int count); int (*read)(struct console *, char *, unsigned); struct tty_driver *(*device)(struct console *, int *); void (*unblank)(void); @ include/linux/console.h:156 @ struct console { short flags; short index; int cflag; +#ifdef CONFIG_PRINTK + char sync_buf[CONSOLE_LOG_MAX]; +#endif + atomic64_t printk_seq; + struct task_struct *thread; uint ispeed; uint ospeed; void *data; @ include/linux/console.h:243 @ extern void console_init(void); void dummycon_register_output_notifier(struct notifier_block *nb); void dummycon_unregister_output_notifier(struct notifier_block *nb); +extern void console_atomic_lock(unsigned int *flags); +extern void console_atomic_unlock(unsigned int flags); + #endif /* _LINUX_CONSOLE_H */ @ include/linux/cpuhotplug.h:156 @ enum cpuhp_state { CPUHP_AP_ONLINE, CPUHP_TEARDOWN_CPU, CPUHP_AP_ONLINE_IDLE, + CPUHP_AP_SCHED_WAIT_EMPTY, CPUHP_AP_SMPBOOT_THREADS, CPUHP_AP_X86_VDSO_VMA_ONLINE, CPUHP_AP_IRQ_AFFINITY_ONLINE, @ include/linux/cpumask.h:202 @ static inline int cpumask_any_and_distribute(const struct cpumask *src1p, return cpumask_next_and(-1, src1p, src2p); } +static inline int cpumask_any_distribute(const struct cpumask *srcp) +{ + return cpumask_first(srcp); +} + #define for_each_cpu(cpu, mask) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) #define for_each_cpu_not(cpu, mask) \ @ include/linux/cpumask.h:260 @ int cpumask_any_but(const struct cpumask *mask, unsigned int cpu); unsigned int cpumask_local_spread(unsigned int i, int node); int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p); +int cpumask_any_distribute(const struct cpumask *srcp); /** * for_each_cpu - iterate over every cpu in a mask @ include/linux/dcache.h:109 @ struct dentry { union { struct list_head d_lru; /* LRU list */ - wait_queue_head_t *d_wait; /* in-lookup ones only */ + struct swait_queue_head *d_wait; /* in-lookup ones only */ }; struct list_head d_child; /* child of parent list */ struct list_head d_subdirs; /* our children */ @ include/linux/dcache.h:241 @ extern void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op extern struct dentry * d_alloc(struct dentry *, const struct qstr *); extern struct dentry * d_alloc_anon(struct super_block *); extern struct dentry * d_alloc_parallel(struct dentry *, const struct qstr *, - wait_queue_head_t *); + struct swait_queue_head *); extern struct dentry * d_splice_alias(struct inode *, struct dentry *); extern struct dentry * d_add_ci(struct dentry *, struct inode *, struct qstr *); extern struct dentry * d_exact_alias(struct dentry *, struct inode *); @ include/linux/debug_locks.h:6 @ #define __LINUX_DEBUG_LOCKING_H #include <linux/atomic.h> -#include <linux/bug.h> -#include <linux/printk.h> +#include <linux/cache.h> struct task_struct; @ include/linux/delay.h:79 @ static inline void fsleep(unsigned long usecs) msleep(DIV_ROUND_UP(usecs, 1000)); } +#ifdef CONFIG_PREEMPT_RT +extern void cpu_chill(void); +#else +# define cpu_chill() cpu_relax() +#endif + #endif /* defined(_LINUX_DELAY_H) */ @ include/linux/entry-common.h:72 @ #define EXIT_TO_USER_MODE_WORK \ (_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE | \ - _TIF_NEED_RESCHED | _TIF_PATCH_PENDING | \ + _TIF_NEED_RESCHED_MASK | _TIF_PATCH_PENDING | \ ARCH_EXIT_TO_USER_MODE_WORK) /** @ include/linux/fs.h:702 @ struct inode { struct block_device *i_bdev; struct cdev *i_cdev; char *i_link; - unsigned i_dir_seq; + unsigned __i_dir_seq; }; __u32 i_generation; @ include/linux/hardirq.h:9 @ #include <linux/preempt.h> #include <linux/lockdep.h> #include <linux/ftrace_irq.h> +#include <linux/sched.h> #include <linux/vtime.h> #include <asm/hardirq.h> @ include/linux/hardirq.h:36 @ static __always_inline void rcu_irq_enter_check_tick(void) */ #define __irq_enter() \ do { \ - account_irq_enter_time(current); \ preempt_count_add(HARDIRQ_OFFSET); \ lockdep_hardirq_enter(); \ + account_hardirq_enter(current); \ } while (0) /* @ include/linux/hardirq.h:66 @ void irq_enter_rcu(void); */ #define __irq_exit() \ do { \ + account_hardirq_exit(current); \ lockdep_hardirq_exit(); \ - account_irq_exit_time(current); \ preempt_count_sub(HARDIRQ_OFFSET); \ } while (0) @ include/linux/hardirq.h:119 @ extern void rcu_nmi_exit(void); do { \ lockdep_off(); \ arch_nmi_enter(); \ - printk_nmi_enter(); \ BUG_ON(in_nmi() == NMI_MASK); \ __preempt_count_add(NMI_OFFSET + HARDIRQ_OFFSET); \ } while (0) @ include/linux/hardirq.h:137 @ extern void rcu_nmi_exit(void); do { \ BUG_ON(!in_nmi()); \ __preempt_count_sub(NMI_OFFSET + HARDIRQ_OFFSET); \ - printk_nmi_exit(); \ arch_nmi_exit(); \ lockdep_on(); \ } while (0) @ include/linux/highmem-internal.h:4 @ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef _LINUX_HIGHMEM_INTERNAL_H +#define _LINUX_HIGHMEM_INTERNAL_H + +/* + * Outside of CONFIG_HIGHMEM to support X86 32bit iomap_atomic() cruft. + */ +#ifdef CONFIG_KMAP_LOCAL +void *__kmap_local_pfn_prot(unsigned long pfn, pgprot_t prot); +void *__kmap_local_page_prot(struct page *page, pgprot_t prot); +void kunmap_local_indexed(void *vaddr); +void kmap_local_fork(struct task_struct *tsk); +void __kmap_local_sched_out(void); +void __kmap_local_sched_in(void); +static inline void kmap_assert_nomap(void) +{ + DEBUG_LOCKS_WARN_ON(current->kmap_ctrl.idx); +} +#else +static inline void kmap_local_fork(struct task_struct *tsk) { } +static inline void kmap_assert_nomap(void) { } +#endif + +#ifdef CONFIG_HIGHMEM +#include <asm/highmem.h> + +#ifndef ARCH_HAS_KMAP_FLUSH_TLB +static inline void kmap_flush_tlb(unsigned long addr) { } +#endif + +#ifndef kmap_prot +#define kmap_prot PAGE_KERNEL +#endif + +void *kmap_high(struct page *page); +void kunmap_high(struct page *page); +void __kmap_flush_unused(void); +struct page *__kmap_to_page(void *addr); + +static inline void *kmap(struct page *page) +{ + void *addr; + + might_sleep(); + if (!PageHighMem(page)) + addr = page_address(page); + else + addr = kmap_high(page); + kmap_flush_tlb((unsigned long)addr); + return addr; +} + +static inline void kunmap(struct page *page) +{ + might_sleep(); + if (!PageHighMem(page)) + return; + kunmap_high(page); +} + +static inline struct page *kmap_to_page(void *addr) +{ + return __kmap_to_page(addr); +} + +static inline void kmap_flush_unused(void) +{ + __kmap_flush_unused(); +} + +static inline void *kmap_local_page(struct page *page) +{ + return __kmap_local_page_prot(page, kmap_prot); +} + +static inline void *kmap_local_page_prot(struct page *page, pgprot_t prot) +{ + return __kmap_local_page_prot(page, prot); +} + +static inline void *kmap_local_pfn(unsigned long pfn) +{ + return __kmap_local_pfn_prot(pfn, kmap_prot); +} + +static inline void __kunmap_local(void *vaddr) +{ + kunmap_local_indexed(vaddr); +} + +static inline void *kmap_atomic(struct page *page) +{ + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + migrate_disable(); + else + preempt_disable(); + pagefault_disable(); + return __kmap_local_page_prot(page, kmap_prot); +} + +static inline void __kunmap_atomic(void *addr) +{ + kunmap_local_indexed(addr); + pagefault_enable(); + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + migrate_enable(); + else + preempt_enable(); +} + +unsigned int __nr_free_highpages(void); +extern atomic_long_t _totalhigh_pages; + +static inline unsigned int nr_free_highpages(void) +{ + return __nr_free_highpages(); +} + +static inline unsigned long totalhigh_pages(void) +{ + return (unsigned long)atomic_long_read(&_totalhigh_pages); +} + +static inline void totalhigh_pages_inc(void) +{ + atomic_long_inc(&_totalhigh_pages); +} + +static inline void totalhigh_pages_add(long count) +{ + atomic_long_add(count, &_totalhigh_pages); +} + +#else /* CONFIG_HIGHMEM */ + +static inline struct page *kmap_to_page(void *addr) +{ + return virt_to_page(addr); +} + +static inline void *kmap(struct page *page) +{ + might_sleep(); + return page_address(page); +} + +static inline void kunmap_high(struct page *page) { } +static inline void kmap_flush_unused(void) { } + +static inline void kunmap(struct page *page) +{ +#ifdef ARCH_HAS_FLUSH_ON_KUNMAP + kunmap_flush_on_unmap(page_address(page)); +#endif +} + +static inline void *kmap_local_page(struct page *page) +{ + return page_address(page); +} + +static inline void *kmap_local_page_prot(struct page *page, pgprot_t prot) +{ + return kmap_local_page(page); +} + +static inline void *kmap_local_pfn(unsigned long pfn) +{ + return kmap_local_page(pfn_to_page(pfn)); +} + +static inline void __kunmap_local(void *addr) +{ +#ifdef ARCH_HAS_FLUSH_ON_KUNMAP + kunmap_flush_on_unmap(addr); +#endif +} + +static inline void *kmap_atomic(struct page *page) +{ + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + migrate_disable(); + else + preempt_disable(); + pagefault_disable(); + return page_address(page); +} + +static inline void __kunmap_atomic(void *addr) +{ +#ifdef ARCH_HAS_FLUSH_ON_KUNMAP + kunmap_flush_on_unmap(addr); +#endif + pagefault_enable(); + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + migrate_enable(); + else + preempt_enable(); +} + +static inline unsigned int nr_free_highpages(void) { return 0; } +static inline unsigned long totalhigh_pages(void) { return 0UL; } + +#endif /* CONFIG_HIGHMEM */ + +/* + * Prevent people trying to call kunmap_atomic() as if it were kunmap() + * kunmap_atomic() should get the return value of kmap_atomic, not the page. + */ +#define kunmap_atomic(__addr) \ +do { \ + BUILD_BUG_ON(__same_type((__addr), struct page *)); \ + __kunmap_atomic(__addr); \ +} while (0) + +#define kunmap_local(__addr) \ +do { \ + BUILD_BUG_ON(__same_type((__addr), struct page *)); \ + __kunmap_local(__addr); \ +} while (0) + +#endif @ include/linux/highmem.h:14 @ #include <asm/cacheflush.h> -#ifndef ARCH_HAS_FLUSH_ANON_PAGE -static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) -{ -} -#endif +#include "highmem-internal.h" -#ifndef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE -static inline void flush_kernel_dcache_page(struct page *page) -{ -} -static inline void flush_kernel_vmap_range(void *vaddr, int size) -{ -} -static inline void invalidate_kernel_vmap_range(void *vaddr, int size) -{ -} -#endif - -#include <asm/kmap_types.h> - -#ifdef CONFIG_HIGHMEM -extern void *kmap_atomic_high_prot(struct page *page, pgprot_t prot); -extern void kunmap_atomic_high(void *kvaddr); -#include <asm/highmem.h> - -#ifndef ARCH_HAS_KMAP_FLUSH_TLB -static inline void kmap_flush_tlb(unsigned long addr) { } -#endif - -#ifndef kmap_prot -#define kmap_prot PAGE_KERNEL -#endif - -void *kmap_high(struct page *page); -static inline void *kmap(struct page *page) -{ - void *addr; - - might_sleep(); - if (!PageHighMem(page)) - addr = page_address(page); - else - addr = kmap_high(page); - kmap_flush_tlb((unsigned long)addr); - return addr; -} - -void kunmap_high(struct page *page); - -static inline void kunmap(struct page *page) -{ - might_sleep(); - if (!PageHighMem(page)) - return; - kunmap_high(page); -} - -/* - * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap because - * no global lock is needed and because the kmap code must perform a global TLB - * invalidation when the kmap pool wraps. +/** + * kmap - Map a page for long term usage + * @page: Pointer to the page to be mapped + * + * Returns: The virtual address of the mapping + * + * Can only be invoked from preemptible task context because on 32bit + * systems with CONFIG_HIGHMEM enabled this function might sleep. * - * However when holding an atomic kmap it is not legal to sleep, so atomic - * kmaps are appropriate for short, tight code paths only. + * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area + * this returns the virtual address of the direct kernel mapping. * - * The use of kmap_atomic/kunmap_atomic is discouraged - kmap/kunmap - * gives a more generic (and caching) interface. But kmap_atomic can - * be used in IRQ contexts, so in some (very limited) cases we need - * it. + * The returned virtual address is globally visible and valid up to the + * point where it is unmapped via kunmap(). The pointer can be handed to + * other contexts. + * + * For highmem pages on 32bit systems this can be slow as the mapping space + * is limited and protected by a global lock. In case that there is no + * mapping slot available the function blocks until a slot is released via + * kunmap(). */ -static inline void *kmap_atomic_prot(struct page *page, pgprot_t prot) -{ - preempt_disable(); - pagefault_disable(); - if (!PageHighMem(page)) - return page_address(page); - return kmap_atomic_high_prot(page, prot); -} -#define kmap_atomic(page) kmap_atomic_prot(page, kmap_prot) - -/* declarations for linux/mm/highmem.c */ -unsigned int nr_free_highpages(void); -extern atomic_long_t _totalhigh_pages; -static inline unsigned long totalhigh_pages(void) -{ - return (unsigned long)atomic_long_read(&_totalhigh_pages); -} - -static inline void totalhigh_pages_inc(void) -{ - atomic_long_inc(&_totalhigh_pages); -} - -static inline void totalhigh_pages_dec(void) -{ - atomic_long_dec(&_totalhigh_pages); -} - -static inline void totalhigh_pages_add(long count) -{ - atomic_long_add(count, &_totalhigh_pages); -} - -static inline void totalhigh_pages_set(long val) -{ - atomic_long_set(&_totalhigh_pages, val); -} - -void kmap_flush_unused(void); +static inline void *kmap(struct page *page); -struct page *kmap_to_page(void *addr); - -#else /* CONFIG_HIGHMEM */ +/** + * kunmap - Unmap the virtual address mapped by kmap() + * @addr: Virtual address to be unmapped + * + * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of + * pages in the low memory area. + */ +static inline void kunmap(struct page *page); -static inline unsigned int nr_free_highpages(void) { return 0; } +/** + * kmap_to_page - Get the page for a kmap'ed address + * @addr: The address to look up + * + * Returns: The page which is mapped to @addr. + */ +static inline struct page *kmap_to_page(void *addr); -static inline struct page *kmap_to_page(void *addr) -{ - return virt_to_page(addr); -} +/** + * kmap_flush_unused - Flush all unused kmap mappings in order to + * remove stray mappings + */ +static inline void kmap_flush_unused(void); -static inline unsigned long totalhigh_pages(void) { return 0UL; } +/** + * kmap_local_page - Map a page for temporary usage + * @page: Pointer to the page to be mapped + * + * Returns: The virtual address of the mapping + * + * Can be invoked from any context. + * + * Requires careful handling when nesting multiple mappings because the map + * management is stack based. The unmap has to be in the reverse order of + * the map operation: + * + * addr1 = kmap_local_page(page1); + * addr2 = kmap_local_page(page2); + * ... + * kunmap_local(addr2); + * kunmap_local(addr1); + * + * Unmapping addr1 before addr2 is invalid and causes malfunction. + * + * Contrary to kmap() mappings the mapping is only valid in the context of + * the caller and cannot be handed to other contexts. + * + * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the + * virtual address of the direct mapping. Only real highmem pages are + * temporarily mapped. + * + * While it is significantly faster than kmap() for the higmem case it + * comes with restrictions about the pointer validity. Only use when really + * necessary. + * + * On HIGHMEM enabled systems mapping a highmem page has the side effect of + * disabling migration in order to keep the virtual address stable across + * preemption. No caller of kmap_local_page() can rely on this side effect. + */ +static inline void *kmap_local_page(struct page *page); -static inline void *kmap(struct page *page) -{ - might_sleep(); - return page_address(page); -} +/** + * kmap_atomic - Atomically map a page for temporary usage - Deprecated! + * @page: Pointer to the page to be mapped + * + * Returns: The virtual address of the mapping + * + * Effectively a wrapper around kmap_local_page() which disables pagefaults + * and preemption. + * + * Do not use in new code. Use kmap_local_page() instead. + */ +static inline void *kmap_atomic(struct page *page); -static inline void kunmap_high(struct page *page) -{ -} +/** + * kunmap_atomic - Unmap the virtual address mapped by kmap_atomic() + * @addr: Virtual address to be unmapped + * + * Counterpart to kmap_atomic(). + * + * Effectively a wrapper around kunmap_local() which additionally undoes + * the side effects of kmap_atomic(), i.e. reenabling pagefaults and + * preemption. + */ -static inline void kunmap(struct page *page) -{ -#ifdef ARCH_HAS_FLUSH_ON_KUNMAP - kunmap_flush_on_unmap(page_address(page)); -#endif -} +/* Highmem related interfaces for management code */ +static inline unsigned int nr_free_highpages(void); +static inline unsigned long totalhigh_pages(void); -static inline void *kmap_atomic(struct page *page) +#ifndef ARCH_HAS_FLUSH_ANON_PAGE +static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) { - preempt_disable(); - pagefault_disable(); - return page_address(page); } -#define kmap_atomic_prot(page, prot) kmap_atomic(page) - -static inline void kunmap_atomic_high(void *addr) -{ - /* - * Mostly nothing to do in the CONFIG_HIGHMEM=n case as kunmap_atomic() - * handles re-enabling faults + preemption - */ -#ifdef ARCH_HAS_FLUSH_ON_KUNMAP - kunmap_flush_on_unmap(addr); #endif -} - -#define kmap_atomic_pfn(pfn) kmap_atomic(pfn_to_page(pfn)) - -#define kmap_flush_unused() do {} while(0) - -#endif /* CONFIG_HIGHMEM */ - -#if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32) - -DECLARE_PER_CPU(int, __kmap_atomic_idx); -static inline int kmap_atomic_idx_push(void) +#ifndef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE +static inline void flush_kernel_dcache_page(struct page *page) { - int idx = __this_cpu_inc_return(__kmap_atomic_idx) - 1; - -#ifdef CONFIG_DEBUG_HIGHMEM - WARN_ON_ONCE(in_irq() && !irqs_disabled()); - BUG_ON(idx >= KM_TYPE_NR); -#endif - return idx; } - -static inline int kmap_atomic_idx(void) +static inline void flush_kernel_vmap_range(void *vaddr, int size) { - return __this_cpu_read(__kmap_atomic_idx) - 1; } - -static inline void kmap_atomic_idx_pop(void) +static inline void invalidate_kernel_vmap_range(void *vaddr, int size) { -#ifdef CONFIG_DEBUG_HIGHMEM - int idx = __this_cpu_dec_return(__kmap_atomic_idx); - - BUG_ON(idx < 0); -#else - __this_cpu_dec(__kmap_atomic_idx); -#endif } - #endif -/* - * Prevent people trying to call kunmap_atomic() as if it were kunmap() - * kunmap_atomic() should get the return value of kmap_atomic, not the page. - */ -#define kunmap_atomic(addr) \ -do { \ - BUILD_BUG_ON(__same_type((addr), struct page *)); \ - kunmap_atomic_high(addr); \ - pagefault_enable(); \ - preempt_enable(); \ -} while (0) - - /* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */ #ifndef clear_user_highpage static inline void clear_user_highpage(struct page *page, unsigned long vaddr) @ include/linux/interrupt.h:563 @ struct softirq_action asmlinkage void do_softirq(void); asmlinkage void __do_softirq(void); -#ifdef __ARCH_HAS_DO_SOFTIRQ +#if defined(__ARCH_HAS_DO_SOFTIRQ) && !defined(CONFIG_PREEMPT_RT) void do_softirq_own_stack(void); #else static inline void do_softirq_own_stack(void) @ include/linux/interrupt.h:657 @ enum TASKLET_STATE_RUN /* Tasklet is running (SMP only) */ }; -#ifdef CONFIG_SMP +#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) static inline int tasklet_trylock(struct tasklet_struct *t) { return !test_and_set_bit(TASKLET_STATE_RUN, &(t)->state); } -static inline void tasklet_unlock(struct tasklet_struct *t) -{ - smp_mb__before_atomic(); - clear_bit(TASKLET_STATE_RUN, &(t)->state); -} +void tasklet_unlock(struct tasklet_struct *t); +void tasklet_unlock_wait(struct tasklet_struct *t); +void tasklet_unlock_spin_wait(struct tasklet_struct *t); -static inline void tasklet_unlock_wait(struct tasklet_struct *t) -{ - while (test_bit(TASKLET_STATE_RUN, &(t)->state)) { barrier(); } -} #else -#define tasklet_trylock(t) 1 -#define tasklet_unlock_wait(t) do { } while (0) -#define tasklet_unlock(t) do { } while (0) +static inline int tasklet_trylock(struct tasklet_struct *t) { return 1; } +static inline void tasklet_unlock(struct tasklet_struct *t) { } +static inline void tasklet_unlock_wait(struct tasklet_struct *t) { } +static inline void tasklet_unlock_spin_wait(struct tasklet_struct *t) { } #endif extern void __tasklet_schedule(struct tasklet_struct *t); @ include/linux/interrupt.h:696 @ static inline void tasklet_disable_nosync(struct tasklet_struct *t) smp_mb__after_atomic(); } +/* + * Do not use in new code. Disabling tasklets from atomic contexts is + * error prone and should be avoided. + */ +static inline void tasklet_disable_in_atomic(struct tasklet_struct *t) +{ + tasklet_disable_nosync(t); + tasklet_unlock_spin_wait(t); + smp_mb(); +} + static inline void tasklet_disable(struct tasklet_struct *t) { tasklet_disable_nosync(t); @ include/linux/io-mapping.h:63 @ io_mapping_fini(struct io_mapping *mapping) iomap_free(mapping->base, mapping->size); } -/* Atomic map/unmap */ +/* Temporary mappings which are only valid in the current context */ static inline void __iomem * -io_mapping_map_atomic_wc(struct io_mapping *mapping, - unsigned long offset) +io_mapping_map_local_wc(struct io_mapping *mapping, unsigned long offset) { resource_size_t phys_addr; BUG_ON(offset >= mapping->size); phys_addr = mapping->base + offset; - return iomap_atomic_prot_pfn(PHYS_PFN(phys_addr), mapping->prot); + return __iomap_local_pfn_prot(PHYS_PFN(phys_addr), mapping->prot); } -static inline void -io_mapping_unmap_atomic(void __iomem *vaddr) +static inline void io_mapping_unmap_local(void __iomem *vaddr) { - iounmap_atomic(vaddr); + kunmap_local_indexed((void __force *)vaddr); } static inline void __iomem * @ include/linux/io-mapping.h:98 @ io_mapping_unmap(void __iomem *vaddr) iounmap(vaddr); } -#else +#else /* HAVE_ATOMIC_IOMAP */ #include <linux/uaccess.h> @ include/linux/io-mapping.h:145 @ io_mapping_unmap(void __iomem *vaddr) { } -/* Atomic map/unmap */ +/* Temporary mappings which are only valid in the current context */ static inline void __iomem * -io_mapping_map_atomic_wc(struct io_mapping *mapping, - unsigned long offset) +io_mapping_map_local_wc(struct io_mapping *mapping, unsigned long offset) { - preempt_disable(); - pagefault_disable(); return io_mapping_map_wc(mapping, offset, PAGE_SIZE); } -static inline void -io_mapping_unmap_atomic(void __iomem *vaddr) +static inline void io_mapping_unmap_local(void __iomem *vaddr) { io_mapping_unmap(vaddr); - pagefault_enable(); - preempt_enable(); } -#endif /* HAVE_ATOMIC_IOMAP */ +#endif /* !HAVE_ATOMIC_IOMAP */ static inline struct io_mapping * io_mapping_create_wc(resource_size_t base, @ include/linux/irq_cpustat.h:1 @ -/* SPDX-License-Identifier: GPL-2.0 */ -#ifndef __irq_cpustat_h -#define __irq_cpustat_h - -/* - * Contains default mappings for irq_cpustat_t, used by almost every - * architecture. Some arch (like s390) have per cpu hardware pages and - * they define their own mappings for irq_stat. - * - * Keith Owens <kaos@ocs.com.au> July 2000. - */ - - -/* - * Simple wrappers reducing source bloat. Define all irq_stat fields - * here, even ones that are arch dependent. That way we get common - * definitions instead of differing sets for each arch. - */ - -#ifndef __ARCH_IRQ_STAT -DECLARE_PER_CPU_ALIGNED(irq_cpustat_t, irq_stat); /* defined in asm/hardirq.h */ -#define __IRQ_STAT(cpu, member) (per_cpu(irq_stat.member, cpu)) -#endif - -/* arch dependent irq_stat fields */ -#define nmi_count(cpu) __IRQ_STAT((cpu), __nmi_count) /* i386 */ - -#endif /* __irq_cpustat_h */ @ include/linux/irq_work.h:6 @ #define _LINUX_IRQ_WORK_H #include <linux/smp_types.h> +#include <linux/rcuwait.h> /* * An entry can be in one of four states: @ include/linux/irq_work.h:26 @ struct irq_work { }; }; void (*func)(struct irq_work *); + struct rcuwait irqwait; }; static inline @ include/linux/irq_work.h:34 @ void init_irq_work(struct irq_work *work, void (*func)(struct irq_work *)) { atomic_set(&work->flags, 0); work->func = func; + rcuwait_init(&work->irqwait); } #define DEFINE_IRQ_WORK(name, _f) struct irq_work name = { \ .flags = ATOMIC_INIT(0), \ - .func = (_f) \ + .func = (_f), \ + .irqwait = __RCUWAIT_INITIALIZER(irqwait), \ } +#define __IRQ_WORK_INIT(_func, _flags) (struct irq_work){ \ + .flags = ATOMIC_INIT(_flags), \ + .func = (_func), \ + .irqwait = __RCUWAIT_INITIALIZER(irqwait), \ +} + +#define IRQ_WORK_INIT(_func) __IRQ_WORK_INIT(_func, 0) +#define IRQ_WORK_INIT_LAZY(_func) __IRQ_WORK_INIT(_func, IRQ_WORK_LAZY) +#define IRQ_WORK_INIT_HARD(_func) __IRQ_WORK_INIT(_func, IRQ_WORK_HARD_IRQ) + +static inline bool irq_work_is_busy(struct irq_work *work) +{ + return atomic_read(&work->flags) & IRQ_WORK_BUSY; +} + +static inline bool irq_work_is_hard(struct irq_work *work) +{ + return atomic_read(&work->flags) & IRQ_WORK_HARD_IRQ; +} bool irq_work_queue(struct irq_work *work); bool irq_work_queue_on(struct irq_work *work, int cpu); @ include/linux/irqdesc.h:71 @ struct irq_desc { unsigned int irqs_unhandled; atomic_t threads_handled; int threads_handled_last; + u64 random_ip; raw_spinlock_t lock; struct cpumask *percpu_enabled; const struct cpumask *percpu_affinity; @ include/linux/irqflags.h:74 @ do { \ do { \ __this_cpu_dec(hardirq_context); \ } while (0) -# define lockdep_softirq_enter() \ -do { \ - current->softirq_context++; \ -} while (0) -# define lockdep_softirq_exit() \ -do { \ - current->softirq_context--; \ -} while (0) # define lockdep_hrtimer_enter(__hrtimer) \ ({ \ @ include/linux/irqflags.h:135 @ do { \ # define lockdep_irq_work_exit(__work) do { } while (0) #endif +#if defined(CONFIG_TRACE_IRQFLAGS) && !defined(CONFIG_PREEMPT_RT) +# define lockdep_softirq_enter() \ +do { \ + current->softirq_context++; \ +} while (0) +# define lockdep_softirq_exit() \ +do { \ + current->softirq_context--; \ +} while (0) + +#else +# define lockdep_softirq_enter() do { } while (0) +# define lockdep_softirq_exit() do { } while (0) +#endif + #if defined(CONFIG_IRQSOFF_TRACER) || \ defined(CONFIG_PREEMPT_TRACER) extern void stop_critical_timings(void); @ include/linux/kernel.h:207 @ extern int _cond_resched(void); extern void ___might_sleep(const char *file, int line, int preempt_offset); extern void __might_sleep(const char *file, int line, int preempt_offset); extern void __cant_sleep(const char *file, int line, int preempt_offset); +extern void __cant_migrate(const char *file, int line); /** * might_sleep - annotation for functions that can sleep @ include/linux/kernel.h:223 @ extern void __cant_sleep(const char *file, int line, int preempt_offset); */ # define might_sleep() \ do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) + +# define might_sleep_no_state_check() \ + do { ___might_sleep(__FILE__, __LINE__, 0); } while (0) + /** * cant_sleep - annotation for functions that cannot sleep * @ include/linux/kernel.h:235 @ extern void __cant_sleep(const char *file, int line, int preempt_offset); # define cant_sleep() \ do { __cant_sleep(__FILE__, __LINE__, 0); } while (0) # define sched_annotate_sleep() (current->task_state_change = 0) + +/** + * cant_migrate - annotation for functions that cannot migrate + * + * Will print a stack trace if executed in code which is migratable + */ +# define cant_migrate() \ + do { \ + if (IS_ENABLED(CONFIG_SMP)) \ + __cant_migrate(__FILE__, __LINE__); \ + } while (0) + /** * non_block_start - annotate the start of section where sleeping is prohibited * @ include/linux/kernel.h:270 @ extern void __cant_sleep(const char *file, int line, int preempt_offset); static inline void __might_sleep(const char *file, int line, int preempt_offset) { } # define might_sleep() do { might_resched(); } while (0) +# define might_sleep_no_state_check() do { might_resched(); } while (0) # define cant_sleep() do { } while (0) +# define cant_migrate() do { } while (0) # define sched_annotate_sleep() do { } while (0) # define non_block_start() do { } while (0) # define non_block_end() do { } while (0) @ include/linux/kernel.h:280 @ extern void __cant_sleep(const char *file, int line, int preempt_offset); #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) -#ifndef CONFIG_PREEMPT_RT -# define cant_migrate() cant_sleep() -#else - /* Placeholder for now */ -# define cant_migrate() do { } while (0) -#endif - /** * abs - return absolute value of an argument * @x: the value. If it is unsigned type, it is converted to signed type first. @ include/linux/kmsg_dump.h:32 @ enum kmsg_dump_reason { KMSG_DUMP_MAX }; +/** + * struct kmsg_dumper_iter - iterator for kernel crash message dumper + * @active: Flag that specifies if this is currently dumping + * @cur_seq: Points to the oldest message to dump (private) + * @next_seq: Points after the newest message to dump (private) + */ +struct kmsg_dumper_iter { + bool active; + u64 cur_seq; + u64 next_seq; +}; + /** * struct kmsg_dumper - kernel crash message dumper structure * @list: Entry in the dumper list (private) @ include/linux/kmsg_dump.h:54 @ enum kmsg_dump_reason { */ struct kmsg_dumper { struct list_head list; - void (*dump)(struct kmsg_dumper *dumper, enum kmsg_dump_reason reason); + void (*dump)(struct kmsg_dumper *dumper, enum kmsg_dump_reason reason, + struct kmsg_dumper_iter *iter); enum kmsg_dump_reason max_reason; - bool active; bool registered; - - /* private state of the kmsg iterator */ - u32 cur_idx; - u32 next_idx; - u64 cur_seq; - u64 next_seq; }; #ifdef CONFIG_PRINTK void kmsg_dump(enum kmsg_dump_reason reason); -bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, - char *line, size_t size, size_t *len); - -bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, +bool kmsg_dump_get_line(struct kmsg_dumper_iter *iter, bool syslog, char *line, size_t size, size_t *len); -bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, - char *buf, size_t size, size_t *len); - -void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper); +bool kmsg_dump_get_buffer(struct kmsg_dumper_iter *iter, bool syslog, + char *buf, size_t size, size_t *len_out); -void kmsg_dump_rewind(struct kmsg_dumper *dumper); +void kmsg_dump_rewind(struct kmsg_dumper_iter *iter); int kmsg_dump_register(struct kmsg_dumper *dumper); @ include/linux/kmsg_dump.h:81 @ static inline void kmsg_dump(enum kmsg_dump_reason reason) { } -static inline bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, - bool syslog, const char *line, - size_t size, size_t *len) -{ - return false; -} - -static inline bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, +static inline bool kmsg_dump_get_line(struct kmsg_dumper_iter *iter, bool syslog, const char *line, size_t size, size_t *len) { return false; } -static inline bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, +static inline bool kmsg_dump_get_buffer(struct kmsg_dumper_iter *iter, bool syslog, char *buf, size_t size, size_t *len) { return false; } -static inline void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) -{ -} - -static inline void kmsg_dump_rewind(struct kmsg_dumper *dumper) +static inline void kmsg_dump_rewind(struct kmsg_dumper_iter *iter) { } @ include/linux/local_lock_internal.h:10 @ #include <linux/lockdep.h> typedef struct { -#ifdef CONFIG_DEBUG_LOCK_ALLOC +#ifdef CONFIG_PREEMPT_RT + spinlock_t lock; + struct task_struct *owner; + int nestcnt; + +#elif defined(CONFIG_DEBUG_LOCK_ALLOC) struct lockdep_map dep_map; struct task_struct *owner; #endif } local_lock_t; -#ifdef CONFIG_DEBUG_LOCK_ALLOC +#ifdef CONFIG_PREEMPT_RT + +#define INIT_LOCAL_LOCK(lockname) { \ + __SPIN_LOCK_UNLOCKED((lockname).lock), \ + .owner = NULL, \ + .nestcnt = 0, \ + } + +static inline void ___local_lock_init(local_lock_t *l) +{ + l->owner = NULL; + l->nestcnt = 0; +} + +#define __local_lock_init(l) \ +do { \ + spin_lock_init(&(l)->lock); \ + ___local_lock_init(l); \ +} while (0) + +#elif defined(CONFIG_DEBUG_LOCK_ALLOC) + # define LOCAL_LOCK_DEBUG_INIT(lockname) \ .dep_map = { \ .name = #lockname, \ @ include/linux/local_lock_internal.h:50 @ typedef struct { .lock_type = LD_LOCK_PERCPU, \ }, \ .owner = NULL, +#endif + +#ifdef CONFIG_PREEMPT_RT +static inline void local_lock_acquire(local_lock_t *l) +{ + if (l->owner != current) { + spin_lock(&l->lock); + DEBUG_LOCKS_WARN_ON(l->owner); + DEBUG_LOCKS_WARN_ON(l->nestcnt); + l->owner = current; + } + l->nestcnt++; +} + +static inline void local_lock_release(local_lock_t *l) +{ + DEBUG_LOCKS_WARN_ON(l->nestcnt == 0); + DEBUG_LOCKS_WARN_ON(l->owner != current); + if (--l->nestcnt) + return; + + l->owner = NULL; + spin_unlock(&l->lock); +} + +#elif defined(CONFIG_DEBUG_LOCK_ALLOC) static inline void local_lock_acquire(local_lock_t *l) { lock_map_acquire(&l->dep_map); @ include/linux/local_lock_internal.h:102 @ static inline void local_lock_release(local_lock_t *l) { } static inline void local_lock_debug_init(local_lock_t *l) { } #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ +#ifdef CONFIG_PREEMPT_RT + +#define __local_lock(lock) \ + do { \ + migrate_disable(); \ + local_lock_acquire(this_cpu_ptr(lock)); \ + } while (0) + +#define __local_unlock(lock) \ + do { \ + local_lock_release(this_cpu_ptr(lock)); \ + migrate_enable(); \ + } while (0) + +#define __local_lock_irq(lock) \ + do { \ + migrate_disable(); \ + local_lock_acquire(this_cpu_ptr(lock)); \ + } while (0) + +#define __local_lock_irqsave(lock, flags) \ + do { \ + migrate_disable(); \ + flags = 0; \ + local_lock_acquire(this_cpu_ptr(lock)); \ + } while (0) + +#define __local_unlock_irq(lock) \ + do { \ + local_lock_release(this_cpu_ptr(lock)); \ + migrate_enable(); \ + } while (0) + +#define __local_unlock_irqrestore(lock, flags) \ + do { \ + local_lock_release(this_cpu_ptr(lock)); \ + migrate_enable(); \ + } while (0) + +#else + #define INIT_LOCAL_LOCK(lockname) { LOCAL_LOCK_DEBUG_INIT(lockname) } #define __local_lock_init(lock) \ @ include/linux/local_lock_internal.h:162 @ do { \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) +#define __local_unlock(lock) \ + do { \ + local_lock_release(this_cpu_ptr(lock)); \ + preempt_enable(); \ + } while (0) + #define __local_lock_irq(lock) \ do { \ local_irq_disable(); \ @ include/linux/local_lock_internal.h:180 @ do { \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) -#define __local_unlock(lock) \ - do { \ - local_lock_release(this_cpu_ptr(lock)); \ - preempt_enable(); \ - } while (0) - #define __local_unlock_irq(lock) \ do { \ local_lock_release(this_cpu_ptr(lock)); \ @ include/linux/local_lock_internal.h:191 @ do { \ local_lock_release(this_cpu_ptr(lock)); \ local_irq_restore(flags); \ } while (0) + +#endif @ include/linux/mm_types.h:15 @ #include <linux/completion.h> #include <linux/cpumask.h> #include <linux/uprobes.h> +#include <linux/rcupdate.h> #include <linux/page-flags-layout.h> #include <linux/workqueue.h> #include <linux/seqlock.h> @ include/linux/mm_types.h:574 @ struct mm_struct { bool tlb_flush_batched; #endif struct uprobes_state uprobes_state; +#ifdef CONFIG_PREEMPT_RT + struct rcu_head delayed_drop; +#endif #ifdef CONFIG_HUGETLB_PAGE atomic_long_t hugetlb_usage; #endif @ include/linux/mutex.h:25 @ struct ww_acquire_ctx; +#ifdef CONFIG_DEBUG_LOCK_ALLOC +# define __DEP_MAP_MUTEX_INITIALIZER(lockname) \ + , .dep_map = { \ + .name = #lockname, \ + .wait_type_inner = LD_WAIT_SLEEP, \ + } +#else +# define __DEP_MAP_MUTEX_INITIALIZER(lockname) +#endif + +#ifdef CONFIG_PREEMPT_RT +# include <linux/mutex_rt.h> +#else + /* * Simple, straightforward mutexes with strict semantics: * @ include/linux/mutex.h:85 @ struct mutex { struct ww_class; struct ww_acquire_ctx; -struct ww_mutex { - struct mutex base; - struct ww_acquire_ctx *ctx; -#ifdef CONFIG_DEBUG_MUTEXES - struct ww_class *ww_class; -#endif -}; - /* * This is the control structure for tasks blocked on mutex, * which resides on the blocked task's kernel stack: @ include/linux/mutex.h:128 @ do { \ __mutex_init((mutex), #mutex, &__key); \ } while (0) -#ifdef CONFIG_DEBUG_LOCK_ALLOC -# define __DEP_MAP_MUTEX_INITIALIZER(lockname) \ - , .dep_map = { \ - .name = #lockname, \ - .wait_type_inner = LD_WAIT_SLEEP, \ - } -#else -# define __DEP_MAP_MUTEX_INITIALIZER(lockname) -#endif - #define __MUTEX_INITIALIZER(lockname) \ { .owner = ATOMIC_LONG_INIT(0) \ , .wait_lock = __SPIN_LOCK_UNLOCKED(lockname.wait_lock) \ @ include/linux/mutex.h:223 @ enum mutex_trylock_recursive_enum { extern /* __deprecated */ __must_check enum mutex_trylock_recursive_enum mutex_trylock_recursive(struct mutex *lock); +#endif /* !PREEMPT_RT */ + #endif /* __LINUX_MUTEX_H */ @ include/linux/mutex_rt.h:4 @ +// SPDX-License-Identifier: GPL-2.0-only +#ifndef __LINUX_MUTEX_RT_H +#define __LINUX_MUTEX_RT_H + +#ifndef __LINUX_MUTEX_H +#error "Please include mutex.h" +#endif + +#include <linux/rtmutex.h> + +/* FIXME: Just for __lockfunc */ +#include <linux/spinlock.h> + +struct mutex { + struct rt_mutex lock; +#ifdef CONFIG_DEBUG_LOCK_ALLOC + struct lockdep_map dep_map; +#endif +}; + +#define __MUTEX_INITIALIZER(mutexname) \ + { \ + .lock = __RT_MUTEX_INITIALIZER(mutexname.lock) \ + __DEP_MAP_MUTEX_INITIALIZER(mutexname) \ + } + +#define DEFINE_MUTEX(mutexname) \ + struct mutex mutexname = __MUTEX_INITIALIZER(mutexname) + +extern void __mutex_do_init(struct mutex *lock, const char *name, struct lock_class_key *key); +extern void __lockfunc _mutex_lock(struct mutex *lock); +extern void __lockfunc _mutex_lock_io_nested(struct mutex *lock, int subclass); +extern int __lockfunc _mutex_lock_interruptible(struct mutex *lock); +extern int __lockfunc _mutex_lock_killable(struct mutex *lock); +extern void __lockfunc _mutex_lock_nested(struct mutex *lock, int subclass); +extern void __lockfunc _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest_lock); +extern int __lockfunc _mutex_lock_interruptible_nested(struct mutex *lock, int subclass); +extern int __lockfunc _mutex_lock_killable_nested(struct mutex *lock, int subclass); +extern int __lockfunc _mutex_trylock(struct mutex *lock); +extern void __lockfunc _mutex_unlock(struct mutex *lock); + +#define mutex_is_locked(l) rt_mutex_is_locked(&(l)->lock) +#define mutex_lock(l) _mutex_lock(l) +#define mutex_lock_interruptible(l) _mutex_lock_interruptible(l) +#define mutex_lock_killable(l) _mutex_lock_killable(l) +#define mutex_trylock(l) _mutex_trylock(l) +#define mutex_unlock(l) _mutex_unlock(l) +#define mutex_lock_io(l) _mutex_lock_io_nested(l, 0); + +#define __mutex_owner(l) ((l)->lock.owner) + +#ifdef CONFIG_DEBUG_MUTEXES +#define mutex_destroy(l) rt_mutex_destroy(&(l)->lock) +#else +static inline void mutex_destroy(struct mutex *lock) {} +#endif + +#ifdef CONFIG_DEBUG_LOCK_ALLOC +# define mutex_lock_nested(l, s) _mutex_lock_nested(l, s) +# define mutex_lock_interruptible_nested(l, s) \ + _mutex_lock_interruptible_nested(l, s) +# define mutex_lock_killable_nested(l, s) \ + _mutex_lock_killable_nested(l, s) +# define mutex_lock_io_nested(l, s) _mutex_lock_io_nested(l, s) + +# define mutex_lock_nest_lock(lock, nest_lock) \ +do { \ + typecheck(struct lockdep_map *, &(nest_lock)->dep_map); \ + _mutex_lock_nest_lock(lock, &(nest_lock)->dep_map); \ +} while (0) + +#else +# define mutex_lock_nested(l, s) _mutex_lock(l) +# define mutex_lock_interruptible_nested(l, s) \ + _mutex_lock_interruptible(l) +# define mutex_lock_killable_nested(l, s) \ + _mutex_lock_killable(l) +# define mutex_lock_nest_lock(lock, nest_lock) mutex_lock(lock) +# define mutex_lock_io_nested(l, s) _mutex_lock_io_nested(l, s) +#endif + +# define mutex_init(mutex) \ +do { \ + static struct lock_class_key __key; \ + \ + rt_mutex_init(&(mutex)->lock); \ + __mutex_do_init((mutex), #mutex, &__key); \ +} while (0) + +# define __mutex_init(mutex, name, key) \ +do { \ + rt_mutex_init(&(mutex)->lock); \ + __mutex_do_init((mutex), name, key); \ +} while (0) + +/** + * These values are chosen such that FAIL and SUCCESS match the + * values of the regular mutex_trylock(). + */ +enum mutex_trylock_recursive_enum { + MUTEX_TRYLOCK_FAILED = 0, + MUTEX_TRYLOCK_SUCCESS = 1, + MUTEX_TRYLOCK_RECURSIVE, +}; +/** + * mutex_trylock_recursive - trylock variant that allows recursive locking + * @lock: mutex to be locked + * + * This function should not be used, _ever_. It is purely for hysterical GEM + * raisins, and once those are gone this will be removed. + * + * Returns: + * MUTEX_TRYLOCK_FAILED - trylock failed, + * MUTEX_TRYLOCK_SUCCESS - lock acquired, + * MUTEX_TRYLOCK_RECURSIVE - we already owned the lock. + */ +int __rt_mutex_owner_current(struct rt_mutex *lock); + +static inline /* __deprecated */ __must_check enum mutex_trylock_recursive_enum +mutex_trylock_recursive(struct mutex *lock) +{ + if (unlikely(__rt_mutex_owner_current(&lock->lock))) + return MUTEX_TRYLOCK_RECURSIVE; + + return mutex_trylock(lock); +} + +extern int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock); + +#endif @ include/linux/nfs_xdr.h:1678 @ struct nfs_unlinkdata { struct nfs_removeargs args; struct nfs_removeres res; struct dentry *dentry; - wait_queue_head_t wq; + struct swait_queue_head wq; const struct cred *cred; struct nfs_fattr dir_attr; long timeout; @ include/linux/notifier.h:61 @ struct notifier_block { }; struct atomic_notifier_head { - spinlock_t lock; + raw_spinlock_t lock; struct notifier_block __rcu *head; }; @ include/linux/notifier.h:81 @ struct srcu_notifier_head { }; #define ATOMIC_INIT_NOTIFIER_HEAD(name) do { \ - spin_lock_init(&(name)->lock); \ + raw_spin_lock_init(&(name)->lock); \ (name)->head = NULL; \ } while (0) #define BLOCKING_INIT_NOTIFIER_HEAD(name) do { \ @ include/linux/notifier.h:98 @ extern void srcu_init_notifier_head(struct srcu_notifier_head *nh); cleanup_srcu_struct(&(name)->srcu); #define ATOMIC_NOTIFIER_INIT(name) { \ - .lock = __SPIN_LOCK_UNLOCKED(name.lock), \ + .lock = __RAW_SPIN_LOCK_UNLOCKED(name.lock), \ .head = NULL } #define BLOCKING_NOTIFIER_INIT(name) { \ .rwsem = __RWSEM_INITIALIZER((name).rwsem), \ @ include/linux/pid.h:6 @ #define _LINUX_PID_H #include <linux/rculist.h> +#include <linux/atomic.h> #include <linux/wait.h> #include <linux/refcount.h> @ include/linux/preempt.h:80 @ /* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */ #include <asm/preempt.h> +#define nmi_count() (preempt_count() & NMI_MASK) #define hardirq_count() (preempt_count() & HARDIRQ_MASK) -#define softirq_count() (preempt_count() & SOFTIRQ_MASK) -#define irq_count() (preempt_count() & (HARDIRQ_MASK | SOFTIRQ_MASK \ - | NMI_MASK)) +#ifdef CONFIG_PREEMPT_RT +# define softirq_count() (current->softirq_disable_cnt & SOFTIRQ_MASK) +#else +# define softirq_count() (preempt_count() & SOFTIRQ_MASK) +#endif +#define irq_count() (nmi_count() | hardirq_count() | softirq_count()) /* - * Are we doing bottom half or hardware interrupt processing? + * Macros to retrieve the current execution context: * - * in_irq() - We're in (hard) IRQ context + * in_nmi() - We're in NMI context + * in_hardirq() - We're in hard IRQ context + * in_serving_softirq() - We're in softirq context + * in_task() - We're in task context + */ +#define in_nmi() (nmi_count()) +#define in_hardirq() (hardirq_count()) +#define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET) +#define in_task() (!(in_nmi() | in_hardirq() | in_serving_softirq())) + +/* + * The following macros are deprecated and should not be used in new code: + * in_irq() - Obsolete version of in_hardirq() * in_softirq() - We have BH disabled, or are processing softirqs * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled - * in_serving_softirq() - We're in softirq context - * in_nmi() - We're in NMI context - * in_task() - We're in task context - * - * Note: due to the BH disabled confusion: in_softirq(),in_interrupt() really - * should not be used in new code. */ #define in_irq() (hardirq_count()) #define in_softirq() (softirq_count()) #define in_interrupt() (irq_count()) -#define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET) -#define in_nmi() (preempt_count() & NMI_MASK) -#define in_task() (!(preempt_count() & \ - (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) /* * The preempt_count offset after preempt_disable(); @ include/linux/preempt.h:124 @ /* * The preempt_count offset after spin_lock() */ +#if !defined(CONFIG_PREEMPT_RT) #define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET +#else +#define PREEMPT_LOCK_OFFSET 0 +#endif /* * The preempt_count offset needed for things like: @ include/linux/preempt.h:177 @ extern void preempt_count_sub(int val); #define preempt_count_inc() preempt_count_add(1) #define preempt_count_dec() preempt_count_sub(1) +#ifdef CONFIG_PREEMPT_LAZY +#define add_preempt_lazy_count(val) do { preempt_lazy_count() += (val); } while (0) +#define sub_preempt_lazy_count(val) do { preempt_lazy_count() -= (val); } while (0) +#define inc_preempt_lazy_count() add_preempt_lazy_count(1) +#define dec_preempt_lazy_count() sub_preempt_lazy_count(1) +#define preempt_lazy_count() (current_thread_info()->preempt_lazy_count) +#else +#define add_preempt_lazy_count(val) do { } while (0) +#define sub_preempt_lazy_count(val) do { } while (0) +#define inc_preempt_lazy_count() do { } while (0) +#define dec_preempt_lazy_count() do { } while (0) +#define preempt_lazy_count() (0) +#endif + #ifdef CONFIG_PREEMPT_COUNT #define preempt_disable() \ @ include/linux/preempt.h:199 @ do { \ barrier(); \ } while (0) +#define preempt_lazy_disable() \ +do { \ + inc_preempt_lazy_count(); \ + barrier(); \ +} while (0) + #define sched_preempt_enable_no_resched() \ do { \ barrier(); \ preempt_count_dec(); \ } while (0) -#define preempt_enable_no_resched() sched_preempt_enable_no_resched() +#ifndef CONFIG_PREEMPT_RT +# define preempt_enable_no_resched() sched_preempt_enable_no_resched() +# define preempt_check_resched_rt() barrier(); +#else +# define preempt_enable_no_resched() preempt_enable() +# define preempt_check_resched_rt() preempt_check_resched() +#endif #define preemptible() (preempt_count() == 0 && !irqs_disabled()) @ include/linux/preempt.h:242 @ do { \ __preempt_schedule(); \ } while (0) +/* + * open code preempt_check_resched() because it is not exported to modules and + * used by local_unlock() or bpf_enable_instrumentation(). + */ +#define preempt_lazy_enable() \ +do { \ + dec_preempt_lazy_count(); \ + barrier(); \ + if (should_resched(0)) \ + __preempt_schedule(); \ +} while (0) + #else /* !CONFIG_PREEMPTION */ #define preempt_enable() \ do { \ @ include/linux/preempt.h:261 @ do { \ preempt_count_dec(); \ } while (0) +#define preempt_lazy_enable() \ +do { \ + dec_preempt_lazy_count(); \ + barrier(); \ +} while (0) + #define preempt_enable_notrace() \ do { \ barrier(); \ @ include/linux/preempt.h:305 @ do { \ #define preempt_disable_notrace() barrier() #define preempt_enable_no_resched_notrace() barrier() #define preempt_enable_notrace() barrier() +#define preempt_check_resched_rt() barrier() #define preemptible() 0 +#define preempt_lazy_disable() barrier() +#define preempt_lazy_enable() barrier() + #endif /* CONFIG_PREEMPT_COUNT */ #ifdef MODULE @ include/linux/preempt.h:329 @ do { \ } while (0) #define preempt_fold_need_resched() \ do { \ - if (tif_need_resched()) \ + if (tif_need_resched_now()) \ set_preempt_need_resched(); \ } while (0) +#ifdef CONFIG_PREEMPT_RT +# define preempt_disable_rt() preempt_disable() +# define preempt_enable_rt() preempt_enable() +# define preempt_disable_nort() barrier() +# define preempt_enable_nort() barrier() +#else +# define preempt_disable_rt() barrier() +# define preempt_enable_rt() barrier() +# define preempt_disable_nort() preempt_disable() +# define preempt_enable_nort() preempt_enable() +#endif + #ifdef CONFIG_PREEMPT_NOTIFIERS struct preempt_notifier; @ include/linux/preempt.h:395 @ static inline void preempt_notifier_init(struct preempt_notifier *notifier, #endif -/** - * migrate_disable - Prevent migration of the current task +#ifdef CONFIG_SMP + +/* + * Migrate-Disable and why it is undesired. * - * Maps to preempt_disable() which also disables preemption. Use - * migrate_disable() to annotate that the intent is to prevent migration, - * but not necessarily preemption. + * When a preempted task becomes elegible to run under the ideal model (IOW it + * becomes one of the M highest priority tasks), it might still have to wait + * for the preemptee's migrate_disable() section to complete. Thereby suffering + * a reduction in bandwidth in the exact duration of the migrate_disable() + * section. * - * Can be invoked nested like preempt_disable() and needs the corresponding - * number of migrate_enable() invocations. - */ -static __always_inline void migrate_disable(void) -{ - preempt_disable(); -} - -/** - * migrate_enable - Allow migration of the current task + * Per this argument, the change from preempt_disable() to migrate_disable() + * gets us: + * + * - a higher priority tasks gains reduced wake-up latency; with preempt_disable() + * it would have had to wait for the lower priority task. + * + * - a lower priority tasks; which under preempt_disable() could've instantly + * migrated away when another CPU becomes available, is now constrained + * by the ability to push the higher priority task away, which might itself be + * in a migrate_disable() section, reducing it's available bandwidth. + * + * IOW it trades latency / moves the interference term, but it stays in the + * system, and as long as it remains unbounded, the system is not fully + * deterministic. * - * Counterpart to migrate_disable(). * - * As migrate_disable() can be invoked nested, only the outermost invocation - * reenables migration. + * The reason we have it anyway. + * + * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a + * number of primitives into becoming preemptible, they would also allow + * migration. This turns out to break a bunch of per-cpu usage. To this end, + * all these primitives employ migirate_disable() to restore this implicit + * assumption. + * + * This is a 'temporary' work-around at best. The correct solution is getting + * rid of the above assumptions and reworking the code to employ explicit + * per-cpu locking or short preempt-disable regions. + * + * The end goal must be to get rid of migrate_disable(), alternatively we need + * a schedulability theory that does not depend on abritrary migration. + * + * + * Notes on the implementation. + * + * The implementation is particularly tricky since existing code patterns + * dictate neither migrate_disable() nor migrate_enable() is allowed to block. + * This means that it cannot use cpus_read_lock() to serialize against hotplug, + * nor can it easily migrate itself into a pending affinity mask change on + * migrate_enable(). + * + * + * Note: even non-work-conserving schedulers like semi-partitioned depends on + * migration, so migrate_disable() is not only a problem for + * work-conserving schedulers. * - * Currently mapped to preempt_enable(). */ -static __always_inline void migrate_enable(void) +extern void migrate_disable(void); +extern void migrate_enable(void); + +#else + +static inline void migrate_disable(void) { - preempt_enable(); + preempt_lazy_disable(); } +static inline void migrate_enable(void) +{ + preempt_lazy_enable(); +} + +#endif /* CONFIG_SMP */ + #endif /* __LINUX_PREEMPT_H */ @ include/linux/printk.h:49 @ static inline const char *printk_skip_headers(const char *buffer) #define CONSOLE_EXT_LOG_MAX 8192 +/* + * The maximum size of a record formatted for console printing + * (i.e. with the prefix prepended to every line). + */ +#define CONSOLE_LOG_MAX 4096 + /* printk's without a loglevel use this.. */ #define MESSAGE_LOGLEVEL_DEFAULT CONFIG_MESSAGE_LOGLEVEL_DEFAULT @ include/linux/printk.h:158 @ static inline __printf(1, 2) __cold void early_printk(const char *s, ...) { } #endif -#ifdef CONFIG_PRINTK_NMI -extern void printk_nmi_enter(void); -extern void printk_nmi_exit(void); -extern void printk_nmi_direct_enter(void); -extern void printk_nmi_direct_exit(void); -#else -static inline void printk_nmi_enter(void) { } -static inline void printk_nmi_exit(void) { } -static inline void printk_nmi_direct_enter(void) { } -static inline void printk_nmi_direct_exit(void) { } -#endif /* PRINTK_NMI */ - struct dev_printk_info; #ifdef CONFIG_PRINTK @ include/linux/printk.h:204 @ __printf(1, 2) void dump_stack_set_arch_desc(const char *fmt, ...); void dump_stack_print_info(const char *log_lvl); void show_regs_print_info(const char *log_lvl); extern asmlinkage void dump_stack(void) __cold; -extern void printk_safe_flush(void); -extern void printk_safe_flush_on_panic(void); #else static inline __printf(1, 0) int vprintk(const char *s, va_list args) @ include/linux/printk.h:267 @ static inline void show_regs_print_info(const char *log_lvl) static inline void dump_stack(void) { } - -static inline void printk_safe_flush(void) -{ -} - -static inline void printk_safe_flush_on_panic(void) -{ -} #endif extern int kptr_restrict; @ include/linux/printk.h:484 @ extern int kptr_restrict; no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif +bool pr_flush(int timeout_ms, bool reset_on_progress); + /* * ratelimited messages with local ratelimit_state, * no local ratelimit_state used in the !PRINTK case @ include/linux/random.h:38 @ static inline void add_latent_entropy(void) {} extern void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) __latent_entropy; -extern void add_interrupt_randomness(int irq, int irq_flags) __latent_entropy; +extern void add_interrupt_randomness(int irq, int irq_flags, __u64 ip) __latent_entropy; extern void get_random_bytes(void *buf, int nbytes); extern int wait_for_random_bytes(void); @ include/linux/rbtree.h:22 @ #include <linux/kernel.h> #include <linux/stddef.h> +#include <linux/rbtree_type.h> #include <linux/rcupdate.h> -struct rb_node { - unsigned long __rb_parent_color; - struct rb_node *rb_right; - struct rb_node *rb_left; -} __attribute__((aligned(sizeof(long)))); - /* The alignment might seem pointless, but allegedly CRIS needs it */ - -struct rb_root { - struct rb_node *rb_node; -}; - #define rb_parent(r) ((struct rb_node *)((r)->__rb_parent_color & ~3)) #define RB_ROOT (struct rb_root) { NULL, } @ include/linux/rbtree.h:105 @ static inline void rb_link_node_rcu(struct rb_node *node, struct rb_node *parent typeof(*pos), field); 1; }); \ pos = n) -/* - * Leftmost-cached rbtrees. - * - * We do not cache the rightmost node based on footprint - * size vs number of potential users that could benefit - * from O(1) rb_last(). Just not worth it, users that want - * this feature can always implement the logic explicitly. - * Furthermore, users that want to cache both pointers may - * find it a bit asymmetric, but that's ok. - */ -struct rb_root_cached { - struct rb_root rb_root; - struct rb_node *rb_leftmost; -}; - #define RB_ROOT_CACHED (struct rb_root_cached) { {NULL, }, NULL } /* Same as rb_first(), but O(1) */ @ include/linux/rbtree_type.h:4 @ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +#ifndef _LINUX_RBTREE_TYPE_H +#define _LINUX_RBTREE_TYPE_H + +struct rb_node { + unsigned long __rb_parent_color; + struct rb_node *rb_right; + struct rb_node *rb_left; +} __attribute__((aligned(sizeof(long)))); +/* The alignment might seem pointless, but allegedly CRIS needs it */ + +struct rb_root { + struct rb_node *rb_node; +}; + +/* + * Leftmost-cached rbtrees. + * + * We do not cache the rightmost node based on footprint + * size vs number of potential users that could benefit + * from O(1) rb_last(). Just not worth it, users that want + * this feature can always implement the logic explicitly. + * Furthermore, users that want to cache both pointers may + * find it a bit asymmetric, but that's ok. + */ +struct rb_root_cached { + struct rb_root rb_root; + struct rb_node *rb_leftmost; +}; + +#endif @ include/linux/rcupdate.h:57 @ void __rcu_read_unlock(void); * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. */ #define rcu_preempt_depth() (current->rcu_read_lock_nesting) +#ifndef CONFIG_PREEMPT_RT +#define sched_rcu_preempt_depth() rcu_preempt_depth() +#else +static inline int sched_rcu_preempt_depth(void) { return 0; } +#endif #else /* #ifdef CONFIG_PREEMPT_RCU */ @ include/linux/rcupdate.h:87 @ static inline int rcu_preempt_depth(void) return 0; } +#define sched_rcu_preempt_depth() rcu_preempt_depth() + #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ /* Internal to kernel */ @ include/linux/rcupdate.h:339 @ static inline void rcu_preempt_sleep_check(void) { } #define rcu_sleep_check() \ do { \ rcu_preempt_sleep_check(); \ - RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ + if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ + RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ "Illegal context switch in RCU-bh read-side critical section"); \ RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ "Illegal context switch in RCU-sched read-side critical section"); \ @ include/linux/rtmutex.h:17 @ #define __LINUX_RT_MUTEX_H #include <linux/linkage.h> -#include <linux/rbtree.h> -#include <linux/spinlock_types.h> +#include <linux/rbtree_type.h> +#include <linux/spinlock_types_raw.h> extern int max_lock_depth; /* for sysctl */ +#ifdef CONFIG_DEBUG_MUTEXES +#include <linux/debug_locks.h> +#endif + /** * The rt_mutex structure * @ include/linux/rtmutex.h:38 @ struct rt_mutex { raw_spinlock_t wait_lock; struct rb_root_cached waiters; struct task_struct *owner; -#ifdef CONFIG_DEBUG_RT_MUTEXES int save_state; - const char *name, *file; - int line; - void *magic; -#endif #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif @ include/linux/rtmutex.h:51 @ struct hrtimer_sleeper; extern int rt_mutex_debug_check_no_locks_freed(const void *from, unsigned long len); extern void rt_mutex_debug_check_no_locks_held(struct task_struct *task); + extern void rt_mutex_debug_task_free(struct task_struct *tsk); #else static inline int rt_mutex_debug_check_no_locks_freed(const void *from, unsigned long len) @ include/linux/rtmutex.h:59 @ struct hrtimer_sleeper; return 0; } # define rt_mutex_debug_check_no_locks_held(task) do { } while (0) +# define rt_mutex_debug_task_free(t) do { } while (0) #endif -#ifdef CONFIG_DEBUG_RT_MUTEXES -# define __DEBUG_RT_MUTEX_INITIALIZER(mutexname) \ - , .name = #mutexname, .file = __FILE__, .line = __LINE__ - -# define rt_mutex_init(mutex) \ +#define rt_mutex_init(mutex) \ do { \ static struct lock_class_key __key; \ __rt_mutex_init(mutex, __func__, &__key); \ } while (0) - extern void rt_mutex_debug_task_free(struct task_struct *tsk); -#else -# define __DEBUG_RT_MUTEX_INITIALIZER(mutexname) -# define rt_mutex_init(mutex) __rt_mutex_init(mutex, NULL, NULL) -# define rt_mutex_debug_task_free(t) do { } while (0) -#endif - #ifdef CONFIG_DEBUG_LOCK_ALLOC #define __DEP_MAP_RT_MUTEX_INITIALIZER(mutexname) \ , .dep_map = { .name = #mutexname } @ include/linux/rtmutex.h:75 @ do { \ #define __DEP_MAP_RT_MUTEX_INITIALIZER(mutexname) #endif -#define __RT_MUTEX_INITIALIZER(mutexname) \ - { .wait_lock = __RAW_SPIN_LOCK_UNLOCKED(mutexname.wait_lock) \ +#define __RT_MUTEX_INITIALIZER_PLAIN(mutexname) \ + .wait_lock = __RAW_SPIN_LOCK_UNLOCKED(mutexname.wait_lock) \ , .waiters = RB_ROOT_CACHED \ , .owner = NULL \ - __DEBUG_RT_MUTEX_INITIALIZER(mutexname) \ - __DEP_MAP_RT_MUTEX_INITIALIZER(mutexname)} + __DEP_MAP_RT_MUTEX_INITIALIZER(mutexname) + +#define __RT_MUTEX_INITIALIZER(mutexname) \ + { __RT_MUTEX_INITIALIZER_PLAIN(mutexname) \ + , .save_state = 0 } + +#define __RT_MUTEX_INITIALIZER_SAVE_STATE(mutexname) \ + { __RT_MUTEX_INITIALIZER_PLAIN(mutexname) \ + , .save_state = 1 } #define DEFINE_RT_MUTEX(mutexname) \ struct rt_mutex mutexname = __RT_MUTEX_INITIALIZER(mutexname) @ include/linux/rtmutex.h:115 @ extern void rt_mutex_lock(struct rt_mutex *lock); #endif extern int rt_mutex_lock_interruptible(struct rt_mutex *lock); -extern int rt_mutex_timed_lock(struct rt_mutex *lock, - struct hrtimer_sleeper *timeout); - extern int rt_mutex_trylock(struct rt_mutex *lock); extern void rt_mutex_unlock(struct rt_mutex *lock); @ include/linux/rwlock_rt.h:4 @ +// SPDX-License-Identifier: GPL-2.0-only +#ifndef __LINUX_RWLOCK_RT_H +#define __LINUX_RWLOCK_RT_H + +#ifndef __LINUX_SPINLOCK_H +#error Do not include directly. Use spinlock.h +#endif + +extern void __lockfunc rt_write_lock(rwlock_t *rwlock); +extern void __lockfunc rt_read_lock(rwlock_t *rwlock); +extern int __lockfunc rt_write_trylock(rwlock_t *rwlock); +extern int __lockfunc rt_read_trylock(rwlock_t *rwlock); +extern void __lockfunc rt_write_unlock(rwlock_t *rwlock); +extern void __lockfunc rt_read_unlock(rwlock_t *rwlock); +extern int __lockfunc rt_read_can_lock(rwlock_t *rwlock); +extern int __lockfunc rt_write_can_lock(rwlock_t *rwlock); +extern void __rt_rwlock_init(rwlock_t *rwlock, char *name, struct lock_class_key *key); + +#define read_can_lock(rwlock) rt_read_can_lock(rwlock) +#define write_can_lock(rwlock) rt_write_can_lock(rwlock) + +#define read_trylock(lock) __cond_lock(lock, rt_read_trylock(lock)) +#define write_trylock(lock) __cond_lock(lock, rt_write_trylock(lock)) + +static inline int __write_trylock_rt_irqsave(rwlock_t *lock, unsigned long *flags) +{ + *flags = 0; + return rt_write_trylock(lock); +} + +#define write_trylock_irqsave(lock, flags) \ + __cond_lock(lock, __write_trylock_rt_irqsave(lock, &(flags))) + +#define read_lock_irqsave(lock, flags) \ + do { \ + typecheck(unsigned long, flags); \ + rt_read_lock(lock); \ + flags = 0; \ + } while (0) + +#define write_lock_irqsave(lock, flags) \ + do { \ + typecheck(unsigned long, flags); \ + rt_write_lock(lock); \ + flags = 0; \ + } while (0) + +#define read_lock(lock) rt_read_lock(lock) + +#define read_lock_bh(lock) \ + do { \ + local_bh_disable(); \ + rt_read_lock(lock); \ + } while (0) + +#define read_lock_irq(lock) read_lock(lock) + +#define write_lock(lock) rt_write_lock(lock) + +#define write_lock_bh(lock) \ + do { \ + local_bh_disable(); \ + rt_write_lock(lock); \ + } while (0) + +#define write_lock_irq(lock) write_lock(lock) + +#define read_unlock(lock) rt_read_unlock(lock) + +#define read_unlock_bh(lock) \ + do { \ + rt_read_unlock(lock); \ + local_bh_enable(); \ + } while (0) + +#define read_unlock_irq(lock) read_unlock(lock) + +#define write_unlock(lock) rt_write_unlock(lock) + +#define write_unlock_bh(lock) \ + do { \ + rt_write_unlock(lock); \ + local_bh_enable(); \ + } while (0) + +#define write_unlock_irq(lock) write_unlock(lock) + +#define read_unlock_irqrestore(lock, flags) \ + do { \ + typecheck(unsigned long, flags); \ + (void) flags; \ + rt_read_unlock(lock); \ + } while (0) + +#define write_unlock_irqrestore(lock, flags) \ + do { \ + typecheck(unsigned long, flags); \ + (void) flags; \ + rt_write_unlock(lock); \ + } while (0) + +#define rwlock_init(rwl) \ +do { \ + static struct lock_class_key __key; \ + \ + __rt_rwlock_init(rwl, #rwl, &__key); \ +} while (0) + +#endif @ include/linux/rwlock_types.h:4 @ #ifndef __LINUX_RWLOCK_TYPES_H #define __LINUX_RWLOCK_TYPES_H +#if !defined(__LINUX_SPINLOCK_TYPES_H) +# error "Do not include directly, include spinlock_types.h" +#endif + /* * include/linux/rwlock_types.h - generic rwlock type definitions * and initializers @ include/linux/rwlock_types_rt.h:4 @ +// SPDX-License-Identifier: GPL-2.0-only +#ifndef __LINUX_RWLOCK_TYPES_RT_H +#define __LINUX_RWLOCK_TYPES_RT_H + +#ifndef __LINUX_SPINLOCK_TYPES_H +#error "Do not include directly. Include spinlock_types.h instead" +#endif + +#ifdef CONFIG_DEBUG_LOCK_ALLOC +# define RW_DEP_MAP_INIT(lockname) .dep_map = { .name = #lockname } +#else +# define RW_DEP_MAP_INIT(lockname) +#endif + +typedef struct rt_rw_lock rwlock_t; + +#define __RW_LOCK_UNLOCKED(name) __RWLOCK_RT_INITIALIZER(name) + +#define DEFINE_RWLOCK(name) \ + rwlock_t name = __RW_LOCK_UNLOCKED(name) + +/* + * A reader biased implementation primarily for CPU pinning. + * + * Can be selected as general replacement for the single reader RT rwlock + * variant + */ +struct rt_rw_lock { + struct rt_mutex rtmutex; + atomic_t readers; +#ifdef CONFIG_DEBUG_LOCK_ALLOC + struct lockdep_map dep_map; +#endif +}; + +#define READER_BIAS (1U << 31) +#define WRITER_BIAS (1U << 30) + +#define __RWLOCK_RT_INITIALIZER(name) \ +{ \ + .readers = ATOMIC_INIT(READER_BIAS), \ + .rtmutex = __RT_MUTEX_INITIALIZER_SAVE_STATE(name.rtmutex), \ + RW_DEP_MAP_INIT(name) \ +} + +void __rwlock_biased_rt_init(struct rt_rw_lock *lock, const char *name, + struct lock_class_key *key); + +#define rwlock_biased_rt_init(rwlock) \ + do { \ + static struct lock_class_key __key; \ + \ + __rwlock_biased_rt_init((rwlock), #rwlock, &__key); \ + } while (0) + +#endif @ include/linux/rwsem-rt.h:4 @ +// SPDX-License-Identifier: GPL-2.0-only +#ifndef _LINUX_RWSEM_RT_H +#define _LINUX_RWSEM_RT_H + +#ifndef _LINUX_RWSEM_H +#error "Include rwsem.h" +#endif + +#include <linux/rtmutex.h> +#include <linux/swait.h> + +#define READER_BIAS (1U << 31) +#define WRITER_BIAS (1U << 30) + +struct rw_semaphore { + atomic_t readers; + struct rt_mutex rtmutex; +#ifdef CONFIG_DEBUG_LOCK_ALLOC + struct lockdep_map dep_map; +#endif +}; + +#define __RWSEM_INITIALIZER(name) \ +{ \ + .readers = ATOMIC_INIT(READER_BIAS), \ + .rtmutex = __RT_MUTEX_INITIALIZER(name.rtmutex), \ + RW_DEP_MAP_INIT(name) \ +} + +#define DECLARE_RWSEM(lockname) \ + struct rw_semaphore lockname = __RWSEM_INITIALIZER(lockname) + +extern void __rwsem_init(struct rw_semaphore *rwsem, const char *name, + struct lock_class_key *key); + +#define __init_rwsem(sem, name, key) \ +do { \ + rt_mutex_init(&(sem)->rtmutex); \ + __rwsem_init((sem), (name), (key)); \ +} while (0) + +#define init_rwsem(sem) \ +do { \ + static struct lock_class_key __key; \ + \ + __init_rwsem((sem), #sem, &__key); \ +} while (0) + +static inline int rwsem_is_locked(struct rw_semaphore *sem) +{ + return atomic_read(&sem->readers) != READER_BIAS; +} + +static inline int rwsem_is_contended(struct rw_semaphore *sem) +{ + return atomic_read(&sem->readers) > 0; +} + +extern void __down_read(struct rw_semaphore *sem); +extern int __down_read_interruptible(struct rw_semaphore *sem); +extern int __down_read_killable(struct rw_semaphore *sem); +extern int __down_read_trylock(struct rw_semaphore *sem); +extern void __down_write(struct rw_semaphore *sem); +extern int __must_check __down_write_killable(struct rw_semaphore *sem); +extern int __down_write_trylock(struct rw_semaphore *sem); +extern void __up_read(struct rw_semaphore *sem); +extern void __up_write(struct rw_semaphore *sem); +extern void __downgrade_write(struct rw_semaphore *sem); + +#endif @ include/linux/rwsem.h:19 @ #include <linux/spinlock.h> #include <linux/atomic.h> #include <linux/err.h> + +#ifdef CONFIG_PREEMPT_RT +#include <linux/rwsem-rt.h> +#else /* PREEMPT_RT */ + #ifdef CONFIG_RWSEM_SPIN_ON_OWNER #include <linux/osq_lock.h> #endif @ include/linux/rwsem.h:127 @ static inline int rwsem_is_contended(struct rw_semaphore *sem) return !list_empty(&sem->wait_list); } +#endif /* !PREEMPT_RT */ + +/* + * The functions below are the same for all rwsem implementations including + * the RT specific variant. + */ + /* * lock for reading */ @ include/linux/sched.h:37 @ #include <linux/rseq.h> #include <linux/seqlock.h> #include <linux/kcsan.h> +#include <asm/kmap_size.h> /* task_struct member predeclarations (sorted alphabetically): */ struct audit_context; @ include/linux/sched.h:115 @ struct io_uring_task; __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ TASK_PARKED) -#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) - #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) -#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) - #ifdef CONFIG_DEBUG_ATOMIC_SLEEP /* @ include/linux/sched.h:140 @ struct io_uring_task; smp_store_mb(current->state, (state_value)); \ } while (0) +#define __set_current_state_no_track(state_value) \ + current->state = (state_value); + #define set_special_state(state_value) \ do { \ unsigned long flags; /* may shadow */ \ @ include/linux/sched.h:196 @ struct io_uring_task; #define set_current_state(state_value) \ smp_store_mb(current->state, (state_value)) +#define __set_current_state_no_track(state_value) \ + __set_current_state(state_value) + /* * set_special_state() should be used for those states when the blocking task * can not use the regular condition based wait-loop. In that case we must @ include/linux/sched.h:651 @ struct wake_q_node { struct wake_q_node *next; }; +struct kmap_ctrl { +#ifdef CONFIG_KMAP_LOCAL + int idx; + pte_t pteval[KM_MAX_IDX]; +#endif +}; + struct task_struct { #ifdef CONFIG_THREAD_INFO_IN_TASK /* @ include/linux/sched.h:668 @ struct task_struct { #endif /* -1 unrunnable, 0 runnable, >0 stopped: */ volatile long state; + /* saved state for "spinlock sleepers" */ + volatile long saved_state; /* * This begins the randomizable portion of task_struct. Only @ include/linux/sched.h:745 @ struct task_struct { int nr_cpus_allowed; const cpumask_t *cpus_ptr; cpumask_t cpus_mask; + void *migration_pending; +#ifdef CONFIG_SMP + unsigned short migration_disabled; +#endif + unsigned short migration_flags; #ifdef CONFIG_PREEMPT_RCU int rcu_read_lock_nesting; @ include/linux/sched.h:996 @ struct task_struct { /* Signal handlers: */ struct signal_struct *signal; struct sighand_struct __rcu *sighand; + struct sigqueue *sigqueue_cache; sigset_t blocked; sigset_t real_blocked; /* Restored if set_restore_sigmask() was used: */ sigset_t saved_sigmask; struct sigpending pending; +#ifdef CONFIG_PREEMPT_RT + /* TODO: move me into ->restart_block ? */ + struct kernel_siginfo forced_info; +#endif unsigned long sas_ss_sp; size_t sas_ss_size; unsigned int sas_ss_flags; @ include/linux/sched.h:1032 @ struct task_struct { raw_spinlock_t pi_lock; struct wake_q_node wake_q; + struct wake_q_node wake_q_sleeper; #ifdef CONFIG_RT_MUTEXES /* PI waiters blocked on a rt_mutex held by this task: */ @ include/linux/sched.h:1060 @ struct task_struct { int softirq_context; int irq_config; #endif +#ifdef CONFIG_PREEMPT_RT + int softirq_disable_cnt; +#endif #ifdef CONFIG_LOCKDEP # define MAX_LOCK_DEPTH 48UL @ include/linux/sched.h:1348 @ struct task_struct { unsigned int sequential_io; unsigned int sequential_io_avg; #endif + struct kmap_ctrl kmap_ctrl; #ifdef CONFIG_DEBUG_ATOMIC_SLEEP unsigned long task_state_change; #endif @ include/linux/sched.h:1794 @ extern struct task_struct *find_get_task_by_vpid(pid_t nr); extern int wake_up_state(struct task_struct *tsk, unsigned int state); extern int wake_up_process(struct task_struct *tsk); +extern int wake_up_lock_sleeper(struct task_struct *tsk); extern void wake_up_new_task(struct task_struct *tsk); #ifdef CONFIG_SMP @ include/linux/sched.h:1885 @ static inline int test_tsk_need_resched(struct task_struct *tsk) return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); } +#ifdef CONFIG_PREEMPT_LAZY +static inline void set_tsk_need_resched_lazy(struct task_struct *tsk) +{ + set_tsk_thread_flag(tsk,TIF_NEED_RESCHED_LAZY); +} + +static inline void clear_tsk_need_resched_lazy(struct task_struct *tsk) +{ + clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED_LAZY); +} + +static inline int test_tsk_need_resched_lazy(struct task_struct *tsk) +{ + return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED_LAZY)); +} + +static inline int need_resched_lazy(void) +{ + return test_thread_flag(TIF_NEED_RESCHED_LAZY); +} + +static inline int need_resched_now(void) +{ + return test_thread_flag(TIF_NEED_RESCHED); +} + +#else +static inline void clear_tsk_need_resched_lazy(struct task_struct *tsk) { } +static inline int need_resched_lazy(void) { return 0; } + +static inline int need_resched_now(void) +{ + return test_thread_flag(TIF_NEED_RESCHED); +} + +#endif + + +static inline bool __task_is_stopped_or_traced(struct task_struct *task) +{ + if (task->state & (__TASK_STOPPED | __TASK_TRACED)) + return true; +#ifdef CONFIG_PREEMPT_RT + if (task->saved_state & (__TASK_STOPPED | __TASK_TRACED)) + return true; +#endif + return false; +} + +static inline bool task_is_stopped_or_traced(struct task_struct *task) +{ + bool traced_stopped; + +#ifdef CONFIG_PREEMPT_RT + unsigned long flags; + + raw_spin_lock_irqsave(&task->pi_lock, flags); + traced_stopped = __task_is_stopped_or_traced(task); + raw_spin_unlock_irqrestore(&task->pi_lock, flags); +#else + traced_stopped = __task_is_stopped_or_traced(task); +#endif + return traced_stopped; +} + +static inline bool task_is_traced(struct task_struct *task) +{ + bool traced = false; + + if (task->state & __TASK_TRACED) + return true; +#ifdef CONFIG_PREEMPT_RT + /* in case the task is sleeping on tasklist_lock */ + raw_spin_lock_irq(&task->pi_lock); + if (task->state & __TASK_TRACED) + traced = true; + else if (task->saved_state & __TASK_TRACED) + traced = true; + raw_spin_unlock_irq(&task->pi_lock); +#endif + return traced; +} + /* * cond_resched() and cond_resched_lock(): latency reduction via * explicit rescheduling in places that are safe. The return @ include/linux/sched/hotplug.h:14 @ extern int sched_cpu_activate(unsigned int cpu); extern int sched_cpu_deactivate(unsigned int cpu); #ifdef CONFIG_HOTPLUG_CPU +extern int sched_cpu_wait_empty(unsigned int cpu); extern int sched_cpu_dying(unsigned int cpu); #else +# define sched_cpu_wait_empty NULL # define sched_cpu_dying NULL #endif @ include/linux/sched/mm.h:52 @ static inline void mmdrop(struct mm_struct *mm) __mmdrop(mm); } +#ifdef CONFIG_PREEMPT_RT +extern void __mmdrop_delayed(struct rcu_head *rhp); +static inline void mmdrop_delayed(struct mm_struct *mm) +{ + if (atomic_dec_and_test(&mm->mm_count)) + call_rcu(&mm->delayed_drop, __mmdrop_delayed); +} +#else +# define mmdrop_delayed(mm) mmdrop(mm) +#endif + /** * mmget() - Pin the address space associated with a &struct mm_struct. * @mm: The address space to pin. @ include/linux/sched/rt.h:42 @ static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *p) } extern void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task); extern void rt_mutex_adjust_pi(struct task_struct *p); -static inline bool tsk_is_pi_blocked(struct task_struct *tsk) -{ - return tsk->pi_blocked_on != NULL; -} #else static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *task) { return NULL; } # define rt_mutex_adjust_pi(p) do { } while (0) -static inline bool tsk_is_pi_blocked(struct task_struct *tsk) -{ - return false; -} #endif extern void normalize_rt_tasks(void); @ include/linux/sched/wake_q.h:61 @ static inline bool wake_q_empty(struct wake_q_head *head) extern void wake_q_add(struct wake_q_head *head, struct task_struct *task); extern void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task); -extern void wake_up_q(struct wake_q_head *head); +extern void wake_q_add_sleeper(struct wake_q_head *head, struct task_struct *task); +extern void __wake_up_q(struct wake_q_head *head, bool sleeper); + +static inline void wake_up_q(struct wake_q_head *head) +{ + __wake_up_q(head, false); +} + +static inline void wake_up_q_sleeper(struct wake_q_head *head) +{ + __wake_up_q(head, true); +} #endif /* _LINUX_SCHED_WAKE_Q_H */ @ include/linux/serial_8250.h:10 @ #ifndef _LINUX_SERIAL_8250_H #define _LINUX_SERIAL_8250_H +#include <linux/atomic.h> #include <linux/serial_core.h> #include <linux/serial_reg.h> #include <linux/platform_device.h> @ include/linux/serial_8250.h:129 @ struct uart_8250_port { #define MSR_SAVE_FLAGS UART_MSR_ANY_DELTA unsigned char msr_saved_flags; + atomic_t console_printing; + struct uart_8250_dma *dma; const struct uart_8250_ops *ops; @ include/linux/serial_8250.h:186 @ void serial8250_init_port(struct uart_8250_port *up); void serial8250_set_defaults(struct uart_8250_port *up); void serial8250_console_write(struct uart_8250_port *up, const char *s, unsigned int count); +void serial8250_console_write_atomic(struct uart_8250_port *up, const char *s, + unsigned int count); int serial8250_console_setup(struct uart_port *port, char *options, bool probe); int serial8250_console_exit(struct uart_port *port); @ include/linux/shmem_fs.h:34 @ struct shmem_sb_info { struct percpu_counter used_blocks; /* How many are allocated */ unsigned long max_inodes; /* How many inodes are allowed */ unsigned long free_inodes; /* How many are left for allocation */ - spinlock_t stat_lock; /* Serialize shmem_sb_info changes */ + raw_spinlock_t stat_lock; /* Serialize shmem_sb_info changes */ umode_t mode; /* Mount mode for root directory */ unsigned char huge; /* Whether to try for hugepages */ kuid_t uid; /* Mount uid for root directory */ @ include/linux/signal.h:268 @ static inline void init_sigpending(struct sigpending *sig) } extern void flush_sigqueue(struct sigpending *queue); +extern void flush_task_sigqueue(struct task_struct *tsk); /* Test if 'sig' is valid signal. Use this instead of testing _NSIG directly */ static inline int valid_signal(unsigned long sig) @ include/linux/skbuff.h:298 @ struct sk_buff_head { __u32 qlen; spinlock_t lock; + raw_spinlock_t raw_lock; }; struct sk_buff; @ include/linux/skbuff.h:1888 @ static inline void skb_queue_head_init(struct sk_buff_head *list) __skb_queue_head_init(list); } +static inline void skb_queue_head_init_raw(struct sk_buff_head *list) +{ + raw_spin_lock_init(&list->raw_lock); + __skb_queue_head_init(list); +} + static inline void skb_queue_head_init_class(struct sk_buff_head *list, struct lock_class_key *class) { @ include/linux/smp.h:242 @ static inline int get_boot_cpu_id(void) #define get_cpu() ({ preempt_disable(); __smp_processor_id(); }) #define put_cpu() preempt_enable() +#define get_cpu_light() ({ migrate_disable(); __smp_processor_id(); }) +#define put_cpu_light() migrate_enable() + /* * Callback to arch code if there's nosmp or maxcpus=0 on the * boot command line: @ include/linux/spinlock.h:312 @ static inline void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock) }) /* Include rwlock functions */ -#include <linux/rwlock.h> +#ifdef CONFIG_PREEMPT_RT +# include <linux/rwlock_rt.h> +#else +# include <linux/rwlock.h> +#endif /* * Pull the _spin_*()/_read_*()/_write_*() functions/declarations: @ include/linux/spinlock.h:327 @ static inline void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock) # include <linux/spinlock_api_up.h> #endif +#ifdef CONFIG_PREEMPT_RT +# include <linux/spinlock_rt.h> +#else /* PREEMPT_RT */ + /* * Map the spin_lock functions to the raw variants for PREEMPT_RT=n */ @ include/linux/spinlock.h:465 @ static __always_inline int spin_is_contended(spinlock_t *lock) #define assert_spin_locked(lock) assert_raw_spin_locked(&(lock)->rlock) +#endif /* !PREEMPT_RT */ + /* * Pull the atomic_t declaration: * (asm-mips/atomic.h needs above definitions) @ include/linux/spinlock_api_smp.h:190 @ static inline int __raw_spin_trylock_bh(raw_spinlock_t *lock) return 0; } -#include <linux/rwlock_api_smp.h> +#ifndef CONFIG_PREEMPT_RT +# include <linux/rwlock_api_smp.h> +#endif #endif /* __LINUX_SPINLOCK_API_SMP_H */ @ include/linux/spinlock_rt.h:4 @ +// SPDX-License-Identifier: GPL-2.0-only +#ifndef __LINUX_SPINLOCK_RT_H +#define __LINUX_SPINLOCK_RT_H + +#ifndef __LINUX_SPINLOCK_H +#error Do not include directly. Use spinlock.h +#endif + +#include <linux/bug.h> + +extern void +__rt_spin_lock_init(spinlock_t *lock, const char *name, struct lock_class_key *key); + +#define spin_lock_init(slock) \ +do { \ + static struct lock_class_key __key; \ + \ + rt_mutex_init(&(slock)->lock); \ + __rt_spin_lock_init(slock, #slock, &__key); \ +} while (0) + +extern void __lockfunc rt_spin_lock(spinlock_t *lock); +extern void __lockfunc rt_spin_lock_nested(spinlock_t *lock, int subclass); +extern void __lockfunc rt_spin_lock_nest_lock(spinlock_t *lock, struct lockdep_map *nest_lock); +extern void __lockfunc rt_spin_unlock(spinlock_t *lock); +extern void __lockfunc rt_spin_lock_unlock(spinlock_t *lock); +extern int __lockfunc rt_spin_trylock_irqsave(spinlock_t *lock, unsigned long *flags); +extern int __lockfunc rt_spin_trylock_bh(spinlock_t *lock); +extern int __lockfunc rt_spin_trylock(spinlock_t *lock); +extern int atomic_dec_and_spin_lock(atomic_t *atomic, spinlock_t *lock); + +/* + * lockdep-less calls, for derived types like rwlock: + * (for trylock they can use rt_mutex_trylock() directly. + * Migrate disable handling must be done at the call site. + */ +extern void __lockfunc __rt_spin_lock(struct rt_mutex *lock); +extern void __lockfunc __rt_spin_trylock(struct rt_mutex *lock); +extern void __lockfunc __rt_spin_unlock(struct rt_mutex *lock); + +#define spin_lock(lock) rt_spin_lock(lock) + +#define spin_lock_bh(lock) \ + do { \ + local_bh_disable(); \ + rt_spin_lock(lock); \ + } while (0) + +#define spin_lock_irq(lock) spin_lock(lock) + +#define spin_do_trylock(lock) __cond_lock(lock, rt_spin_trylock(lock)) + +#define spin_trylock(lock) \ +({ \ + int __locked; \ + __locked = spin_do_trylock(lock); \ + __locked; \ +}) + +#ifdef CONFIG_LOCKDEP +# define spin_lock_nested(lock, subclass) \ + do { \ + rt_spin_lock_nested(lock, subclass); \ + } while (0) + +#define spin_lock_bh_nested(lock, subclass) \ + do { \ + local_bh_disable(); \ + rt_spin_lock_nested(lock, subclass); \ + } while (0) + +# define spin_lock_nest_lock(lock, subclass) \ + do { \ + typecheck(struct lockdep_map *, &(subclass)->dep_map); \ + rt_spin_lock_nest_lock(lock, &(subclass)->dep_map); \ + } while (0) + +# define spin_lock_irqsave_nested(lock, flags, subclass) \ + do { \ + typecheck(unsigned long, flags); \ + flags = 0; \ + rt_spin_lock_nested(lock, subclass); \ + } while (0) +#else +# define spin_lock_nested(lock, subclass) spin_lock(((void)(subclass), (lock))) +# define spin_lock_nest_lock(lock, subclass) spin_lock(((void)(subclass), (lock))) +# define spin_lock_bh_nested(lock, subclass) spin_lock_bh(((void)(subclass), (lock))) + +# define spin_lock_irqsave_nested(lock, flags, subclass) \ + do { \ + typecheck(unsigned long, flags); \ + flags = 0; \ + spin_lock(((void)(subclass), (lock))); \ + } while (0) +#endif + +#define spin_lock_irqsave(lock, flags) \ + do { \ + typecheck(unsigned long, flags); \ + flags = 0; \ + spin_lock(lock); \ + } while (0) + +#define spin_unlock(lock) rt_spin_unlock(lock) + +#define spin_unlock_bh(lock) \ + do { \ + rt_spin_unlock(lock); \ + local_bh_enable(); \ + } while (0) + +#define spin_unlock_irq(lock) spin_unlock(lock) + +#define spin_unlock_irqrestore(lock, flags) \ + do { \ + typecheck(unsigned long, flags); \ + (void) flags; \ + spin_unlock(lock); \ + } while (0) + +#define spin_trylock_bh(lock) __cond_lock(lock, rt_spin_trylock_bh(lock)) +#define spin_trylock_irq(lock) spin_trylock(lock) + +#define spin_trylock_irqsave(lock, flags) \ +({ \ + int __locked; \ + \ + typecheck(unsigned long, flags); \ + flags = 0; \ + __locked = spin_trylock(lock); \ + __locked; \ +}) + +#ifdef CONFIG_GENERIC_LOCKBREAK +# define spin_is_contended(lock) ((lock)->break_lock) +#else +# define spin_is_contended(lock) (((void)(lock), 0)) +#endif + +static inline int spin_can_lock(spinlock_t *lock) +{ + return !rt_mutex_is_locked(&lock->lock); +} + +static inline int spin_is_locked(spinlock_t *lock) +{ + return rt_mutex_is_locked(&lock->lock); +} + +static inline void assert_spin_locked(spinlock_t *lock) +{ + BUG_ON(!spin_is_locked(lock)); +} + +#endif @ include/linux/spinlock_types.h:12 @ * Released under the General Public License (GPL). */ -#if defined(CONFIG_SMP) -# include <asm/spinlock_types.h> -#else -# include <linux/spinlock_types_up.h> -#endif - -#include <linux/lockdep_types.h> - -typedef struct raw_spinlock { - arch_spinlock_t raw_lock; -#ifdef CONFIG_DEBUG_SPINLOCK - unsigned int magic, owner_cpu; - void *owner; -#endif -#ifdef CONFIG_DEBUG_LOCK_ALLOC - struct lockdep_map dep_map; -#endif -} raw_spinlock_t; - -#define SPINLOCK_MAGIC 0xdead4ead - -#define SPINLOCK_OWNER_INIT ((void *)-1L) - -#ifdef CONFIG_DEBUG_LOCK_ALLOC -# define RAW_SPIN_DEP_MAP_INIT(lockname) \ - .dep_map = { \ - .name = #lockname, \ - .wait_type_inner = LD_WAIT_SPIN, \ - } -# define SPIN_DEP_MAP_INIT(lockname) \ - .dep_map = { \ - .name = #lockname, \ - .wait_type_inner = LD_WAIT_CONFIG, \ - } -#else -# define RAW_SPIN_DEP_MAP_INIT(lockname) -# define SPIN_DEP_MAP_INIT(lockname) -#endif +#include <linux/spinlock_types_raw.h> -#ifdef CONFIG_DEBUG_SPINLOCK -# define SPIN_DEBUG_INIT(lockname) \ - .magic = SPINLOCK_MAGIC, \ - .owner_cpu = -1, \ - .owner = SPINLOCK_OWNER_INIT, +#ifndef CONFIG_PREEMPT_RT +# include <linux/spinlock_types_nort.h> +# include <linux/rwlock_types.h> #else -# define SPIN_DEBUG_INIT(lockname) +# include <linux/rtmutex.h> +# include <linux/spinlock_types_rt.h> +# include <linux/rwlock_types_rt.h> #endif -#define __RAW_SPIN_LOCK_INITIALIZER(lockname) \ - { \ - .raw_lock = __ARCH_SPIN_LOCK_UNLOCKED, \ - SPIN_DEBUG_INIT(lockname) \ - RAW_SPIN_DEP_MAP_INIT(lockname) } - -#define __RAW_SPIN_LOCK_UNLOCKED(lockname) \ - (raw_spinlock_t) __RAW_SPIN_LOCK_INITIALIZER(lockname) - -#define DEFINE_RAW_SPINLOCK(x) raw_spinlock_t x = __RAW_SPIN_LOCK_UNLOCKED(x) - -typedef struct spinlock { - union { - struct raw_spinlock rlock; - -#ifdef CONFIG_DEBUG_LOCK_ALLOC -# define LOCK_PADSIZE (offsetof(struct raw_spinlock, dep_map)) - struct { - u8 __padding[LOCK_PADSIZE]; - struct lockdep_map dep_map; - }; -#endif - }; -} spinlock_t; - -#define ___SPIN_LOCK_INITIALIZER(lockname) \ - { \ - .raw_lock = __ARCH_SPIN_LOCK_UNLOCKED, \ - SPIN_DEBUG_INIT(lockname) \ - SPIN_DEP_MAP_INIT(lockname) } - -#define __SPIN_LOCK_INITIALIZER(lockname) \ - { { .rlock = ___SPIN_LOCK_INITIALIZER(lockname) } } - -#define __SPIN_LOCK_UNLOCKED(lockname) \ - (spinlock_t) __SPIN_LOCK_INITIALIZER(lockname) - -#define DEFINE_SPINLOCK(x) spinlock_t x = __SPIN_LOCK_UNLOCKED(x) - -#include <linux/rwlock_types.h> - #endif /* __LINUX_SPINLOCK_TYPES_H */ @ include/linux/spinlock_types_nort.h:4 @ +#ifndef __LINUX_SPINLOCK_TYPES_NORT_H +#define __LINUX_SPINLOCK_TYPES_NORT_H + +#ifndef __LINUX_SPINLOCK_TYPES_H +#error "Do not include directly. Include spinlock_types.h instead" +#endif + +/* + * The non RT version maps spinlocks to raw_spinlocks + */ +typedef struct spinlock { + union { + struct raw_spinlock rlock; + +#ifdef CONFIG_DEBUG_LOCK_ALLOC +# define LOCK_PADSIZE (offsetof(struct raw_spinlock, dep_map)) + struct { + u8 __padding[LOCK_PADSIZE]; + struct lockdep_map dep_map; + }; +#endif + }; +} spinlock_t; + +#define ___SPIN_LOCK_INITIALIZER(lockname) \ +{ \ + .raw_lock = __ARCH_SPIN_LOCK_UNLOCKED, \ + SPIN_DEBUG_INIT(lockname) \ + SPIN_DEP_MAP_INIT(lockname) } + +#define __SPIN_LOCK_INITIALIZER(lockname) \ + { { .rlock = ___SPIN_LOCK_INITIALIZER(lockname) } } + +#define __SPIN_LOCK_UNLOCKED(lockname) \ + (spinlock_t) __SPIN_LOCK_INITIALIZER(lockname) + +#define DEFINE_SPINLOCK(x) spinlock_t x = __SPIN_LOCK_UNLOCKED(x) + +#endif @ include/linux/spinlock_types_raw.h:4 @ +#ifndef __LINUX_SPINLOCK_TYPES_RAW_H +#define __LINUX_SPINLOCK_TYPES_RAW_H + +#include <linux/types.h> + +#if defined(CONFIG_SMP) +# include <asm/spinlock_types.h> +#else +# include <linux/spinlock_types_up.h> +#endif + +#include <linux/lockdep_types.h> + +typedef struct raw_spinlock { + arch_spinlock_t raw_lock; +#ifdef CONFIG_DEBUG_SPINLOCK + unsigned int magic, owner_cpu; + void *owner; +#endif +#ifdef CONFIG_DEBUG_LOCK_ALLOC + struct lockdep_map dep_map; +#endif +} raw_spinlock_t; + +#define SPINLOCK_MAGIC 0xdead4ead + +#define SPINLOCK_OWNER_INIT ((void *)-1L) + +#ifdef CONFIG_DEBUG_LOCK_ALLOC +# define RAW_SPIN_DEP_MAP_INIT(lockname) \ + .dep_map = { \ + .name = #lockname, \ + .wait_type_inner = LD_WAIT_SPIN, \ + } +# define SPIN_DEP_MAP_INIT(lockname) \ + .dep_map = { \ + .name = #lockname, \ + .wait_type_inner = LD_WAIT_CONFIG, \ + } +#else +# define RAW_SPIN_DEP_MAP_INIT(lockname) +# define SPIN_DEP_MAP_INIT(lockname) +#endif + +#ifdef CONFIG_DEBUG_SPINLOCK +# define SPIN_DEBUG_INIT(lockname) \ + .magic = SPINLOCK_MAGIC, \ + .owner_cpu = -1, \ + .owner = SPINLOCK_OWNER_INIT, +#else +# define SPIN_DEBUG_INIT(lockname) +#endif + +#define __RAW_SPIN_LOCK_INITIALIZER(lockname) \ +{ \ + .raw_lock = __ARCH_SPIN_LOCK_UNLOCKED, \ + SPIN_DEBUG_INIT(lockname) \ + RAW_SPIN_DEP_MAP_INIT(lockname) } + +#define __RAW_SPIN_LOCK_UNLOCKED(lockname) \ + (raw_spinlock_t) __RAW_SPIN_LOCK_INITIALIZER(lockname) + +#define DEFINE_RAW_SPINLOCK(x) raw_spinlock_t x = __RAW_SPIN_LOCK_UNLOCKED(x) + +#endif @ include/linux/spinlock_types_rt.h:4 @ +// SPDX-License-Identifier: GPL-2.0-only +#ifndef __LINUX_SPINLOCK_TYPES_RT_H +#define __LINUX_SPINLOCK_TYPES_RT_H + +#ifndef __LINUX_SPINLOCK_TYPES_H +#error "Do not include directly. Include spinlock_types.h instead" +#endif + +#include <linux/cache.h> + +/* + * PREEMPT_RT: spinlocks - an RT mutex plus lock-break field: + */ +typedef struct spinlock { + struct rt_mutex lock; + unsigned int break_lock; +#ifdef CONFIG_DEBUG_LOCK_ALLOC + struct lockdep_map dep_map; +#endif +} spinlock_t; + +#define __RT_SPIN_INITIALIZER(name) \ + { \ + .wait_lock = __RAW_SPIN_LOCK_UNLOCKED(name.wait_lock), \ + .save_state = 1, \ + } +/* +.wait_list = PLIST_HEAD_INIT_RAW((name).lock.wait_list, (name).lock.wait_lock) +*/ + +#define __SPIN_LOCK_UNLOCKED(name) \ + { .lock = __RT_SPIN_INITIALIZER(name.lock), \ + SPIN_DEP_MAP_INIT(name) } + +#define DEFINE_SPINLOCK(name) \ + spinlock_t name = __SPIN_LOCK_UNLOCKED(name) + +#endif @ include/linux/spinlock_types_up.h:4 @ #ifndef __LINUX_SPINLOCK_TYPES_UP_H #define __LINUX_SPINLOCK_TYPES_UP_H -#ifndef __LINUX_SPINLOCK_TYPES_H +#if !defined(__LINUX_SPINLOCK_TYPES_H) && !defined(__LINUX_RT_MUTEX_H) # error "please don't include this file directly" #endif @ include/linux/stop_machine.h:27 @ typedef int (*cpu_stop_fn_t)(void *arg); struct cpu_stop_work { struct list_head list; /* cpu_stopper->works */ cpu_stop_fn_t fn; + unsigned long caller; void *arg; struct cpu_stop_done *done; }; @ include/linux/stop_machine.h:40 @ void stop_machine_park(int cpu); void stop_machine_unpark(int cpu); void stop_machine_yield(const struct cpumask *cpumask); +extern void print_stop_info(const char *log_lvl, struct task_struct *task); + #else /* CONFIG_SMP */ #include <linux/workqueue.h> @ include/linux/stop_machine.h:86 @ static inline bool stop_one_cpu_nowait(unsigned int cpu, return false; } +static inline void print_stop_info(const char *log_lvl, struct task_struct *task) { } + #endif /* CONFIG_SMP */ /* @ include/linux/thread_info.h:113 @ static inline int test_ti_thread_flag(struct thread_info *ti, int flag) #define test_thread_flag(flag) \ test_ti_thread_flag(current_thread_info(), flag) -#define tif_need_resched() test_thread_flag(TIF_NEED_RESCHED) +#ifdef CONFIG_PREEMPT_LAZY +#define tif_need_resched() (test_thread_flag(TIF_NEED_RESCHED) || \ + test_thread_flag(TIF_NEED_RESCHED_LAZY)) +#define tif_need_resched_now() (test_thread_flag(TIF_NEED_RESCHED)) +#define tif_need_resched_lazy() test_thread_flag(TIF_NEED_RESCHED_LAZY)) + +#else +#define tif_need_resched() test_thread_flag(TIF_NEED_RESCHED) +#define tif_need_resched_now() test_thread_flag(TIF_NEED_RESCHED) +#define tif_need_resched_lazy() 0 +#endif #ifndef CONFIG_HAVE_ARCH_WITHIN_STACK_FRAMES static inline int arch_within_stack_frames(const void * const stack, @ include/linux/trace_events.h:70 @ struct trace_entry { unsigned char flags; unsigned char preempt_count; int pid; + unsigned char migrate_disable; + unsigned char preempt_lazy_count; }; #define TRACE_EVENT_TYPE_MAX \ @ include/linux/trace_events.h:153 @ enum print_line_t { enum print_line_t trace_handle_return(struct trace_seq *s); -void tracing_generic_entry_update(struct trace_entry *entry, - unsigned short type, - unsigned long flags, - int pc); +static inline void tracing_generic_entry_update(struct trace_entry *entry, + unsigned short type, + unsigned int trace_ctx) +{ + entry->preempt_count = trace_ctx & 0xff; + entry->migrate_disable = (trace_ctx >> 8) & 0xff; + entry->preempt_lazy_count = (trace_ctx >> 16) & 0xff; + entry->pid = current->pid; + entry->type = type; + entry->flags = trace_ctx >> 24; +} + +unsigned int tracing_gen_ctx_irq_test(unsigned int irqs_status); + +enum trace_flag_type { + TRACE_FLAG_IRQS_OFF = 0x01, + TRACE_FLAG_IRQS_NOSUPPORT = 0x02, + TRACE_FLAG_NEED_RESCHED = 0x04, + TRACE_FLAG_HARDIRQ = 0x08, + TRACE_FLAG_SOFTIRQ = 0x10, + TRACE_FLAG_PREEMPT_RESCHED = 0x20, + TRACE_FLAG_NMI = 0x40, + TRACE_FLAG_NEED_RESCHED_LAZY = 0x80, +}; + +#ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT +static inline unsigned int tracing_gen_ctx_flags(unsigned long irqflags) +{ + unsigned int irq_status = irqs_disabled_flags(irqflags) ? + TRACE_FLAG_IRQS_OFF : 0; + return tracing_gen_ctx_irq_test(irq_status); +} +static inline unsigned int tracing_gen_ctx(void) +{ + unsigned long irqflags; + + local_save_flags(irqflags); + return tracing_gen_ctx_flags(irqflags); +} +#else + +static inline unsigned int tracing_gen_ctx_flags(unsigned long irqflags) +{ + return tracing_gen_ctx_irq_test(TRACE_FLAG_IRQS_NOSUPPORT); +} +static inline unsigned int tracing_gen_ctx(void) +{ + return tracing_gen_ctx_irq_test(TRACE_FLAG_IRQS_NOSUPPORT); +} +#endif + +static inline unsigned int tracing_gen_ctx_dec(void) +{ + unsigned int trace_ctx; + + trace_ctx = tracing_gen_ctx(); + /* + * Subtract one from the preeption counter if preemption is enabled, + * see trace_event_buffer_reserve()for details. + */ + if (IS_ENABLED(CONFIG_PREEMPTION)) + trace_ctx--; + return trace_ctx; +} + struct trace_event_file; struct ring_buffer_event * trace_event_buffer_lock_reserve(struct trace_buffer **current_buffer, struct trace_event_file *trace_file, int type, unsigned long len, - unsigned long flags, int pc); + unsigned int trace_ctx); #define TRACE_RECORD_CMDLINE BIT(0) #define TRACE_RECORD_TGID BIT(1) @ include/linux/trace_events.h:298 @ struct trace_event_buffer { struct ring_buffer_event *event; struct trace_event_file *trace_file; void *entry; - unsigned long flags; - int pc; + unsigned int trace_ctx; struct pt_regs *regs; }; @ include/linux/u64_stats_sync.h:69 @ #include <linux/seqlock.h> struct u64_stats_sync { -#if BITS_PER_LONG==32 && defined(CONFIG_SMP) +#if BITS_PER_LONG==32 && (defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)) seqcount_t seq; #endif }; @ include/linux/u64_stats_sync.h:118 @ static inline void u64_stats_inc(u64_stats_t *p) } #endif -#if BITS_PER_LONG == 32 && defined(CONFIG_SMP) +#if BITS_PER_LONG == 32 && (defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)) #define u64_stats_init(syncp) seqcount_init(&(syncp)->seq) #else static inline void u64_stats_init(struct u64_stats_sync *syncp) @ include/linux/u64_stats_sync.h:128 @ static inline void u64_stats_init(struct u64_stats_sync *syncp) static inline void u64_stats_update_begin(struct u64_stats_sync *syncp) { -#if BITS_PER_LONG==32 && defined(CONFIG_SMP) +#if BITS_PER_LONG == 32 && (defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)) + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + preempt_disable(); write_seqcount_begin(&syncp->seq); #endif } static inline void u64_stats_update_end(struct u64_stats_sync *syncp) { -#if BITS_PER_LONG==32 && defined(CONFIG_SMP) +#if BITS_PER_LONG == 32 && (defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)) write_seqcount_end(&syncp->seq); + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + preempt_enable(); #endif } @ include/linux/u64_stats_sync.h:149 @ u64_stats_update_begin_irqsave(struct u64_stats_sync *syncp) { unsigned long flags = 0; -#if BITS_PER_LONG==32 && defined(CONFIG_SMP) - local_irq_save(flags); +#if BITS_PER_LONG == 32 && (defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)) + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + preempt_disable(); + else + local_irq_save(flags); write_seqcount_begin(&syncp->seq); #endif return flags; @ include/linux/u64_stats_sync.h:163 @ static inline void u64_stats_update_end_irqrestore(struct u64_stats_sync *syncp, unsigned long flags) { -#if BITS_PER_LONG==32 && defined(CONFIG_SMP) +#if BITS_PER_LONG == 32 && (defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)) write_seqcount_end(&syncp->seq); - local_irq_restore(flags); + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + preempt_enable(); + else + local_irq_restore(flags); #endif } static inline unsigned int __u64_stats_fetch_begin(const struct u64_stats_sync *syncp) { -#if BITS_PER_LONG==32 && defined(CONFIG_SMP) +#if BITS_PER_LONG == 32 && (defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)) return read_seqcount_begin(&syncp->seq); #else return 0; @ include/linux/u64_stats_sync.h:183 @ static inline unsigned int __u64_stats_fetch_begin(const struct u64_stats_sync * static inline unsigned int u64_stats_fetch_begin(const struct u64_stats_sync *syncp) { -#if BITS_PER_LONG==32 && !defined(CONFIG_SMP) +#if BITS_PER_LONG == 32 && (!defined(CONFIG_SMP) && !defined(CONFIG_PREEMPT_RT)) preempt_disable(); #endif return __u64_stats_fetch_begin(syncp); @ include/linux/u64_stats_sync.h:192 @ static inline unsigned int u64_stats_fetch_begin(const struct u64_stats_sync *sy static inline bool __u64_stats_fetch_retry(const struct u64_stats_sync *syncp, unsigned int start) { -#if BITS_PER_LONG==32 && defined(CONFIG_SMP) +#if BITS_PER_LONG == 32 && (defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)) return read_seqcount_retry(&syncp->seq, start); #else return false; @ include/linux/u64_stats_sync.h:202 @ static inline bool __u64_stats_fetch_retry(const struct u64_stats_sync *syncp, static inline bool u64_stats_fetch_retry(const struct u64_stats_sync *syncp, unsigned int start) { -#if BITS_PER_LONG==32 && !defined(CONFIG_SMP) +#if BITS_PER_LONG == 32 && (!defined(CONFIG_SMP) && !defined(CONFIG_PREEMPT_RT)) preempt_enable(); #endif return __u64_stats_fetch_retry(syncp, start); @ include/linux/u64_stats_sync.h:216 @ static inline bool u64_stats_fetch_retry(const struct u64_stats_sync *syncp, */ static inline unsigned int u64_stats_fetch_begin_irq(const struct u64_stats_sync *syncp) { -#if BITS_PER_LONG==32 && !defined(CONFIG_SMP) +#if BITS_PER_LONG == 32 && defined(CONFIG_PREEMPT_RT) + preempt_disable(); +#elif BITS_PER_LONG == 32 && !defined(CONFIG_SMP) local_irq_disable(); #endif return __u64_stats_fetch_begin(syncp); @ include/linux/u64_stats_sync.h:227 @ static inline unsigned int u64_stats_fetch_begin_irq(const struct u64_stats_sync static inline bool u64_stats_fetch_retry_irq(const struct u64_stats_sync *syncp, unsigned int start) { -#if BITS_PER_LONG==32 && !defined(CONFIG_SMP) +#if BITS_PER_LONG == 32 && defined(CONFIG_PREEMPT_RT) + preempt_enable(); +#elif BITS_PER_LONG == 32 && !defined(CONFIG_SMP) local_irq_enable(); #endif return __u64_stats_fetch_retry(syncp, start); @ include/linux/vmstat.h:66 @ DECLARE_PER_CPU(struct vm_event_state, vm_event_states); */ static inline void __count_vm_event(enum vm_event_item item) { + preempt_disable_rt(); raw_cpu_inc(vm_event_states.event[item]); + preempt_enable_rt(); } static inline void count_vm_event(enum vm_event_item item) @ include/linux/vmstat.h:78 @ static inline void count_vm_event(enum vm_event_item item) static inline void __count_vm_events(enum vm_event_item item, long delta) { + preempt_disable_rt(); raw_cpu_add(vm_event_states.event[item], delta); + preempt_enable_rt(); } static inline void count_vm_events(enum vm_event_item item, long delta) @ include/linux/vtime.h:86 @ static inline void vtime_init_idle(struct task_struct *tsk, int cpu) { } #endif #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE -extern void vtime_account_irq_enter(struct task_struct *tsk); -static inline void vtime_account_irq_exit(struct task_struct *tsk) -{ - /* On hard|softirq exit we always account to hard|softirq cputime */ - vtime_account_kernel(tsk); -} +extern void vtime_account_irq(struct task_struct *tsk, unsigned int offset); +extern void vtime_account_softirq(struct task_struct *tsk); +extern void vtime_account_hardirq(struct task_struct *tsk); extern void vtime_flush(struct task_struct *tsk); #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ -static inline void vtime_account_irq_enter(struct task_struct *tsk) { } -static inline void vtime_account_irq_exit(struct task_struct *tsk) { } +static inline void vtime_account_irq(struct task_struct *tsk, unsigned int offset) { } +static inline void vtime_account_softirq(struct task_struct *tsk) { } +static inline void vtime_account_hardirq(struct task_struct *tsk) { } static inline void vtime_flush(struct task_struct *tsk) { } #endif #ifdef CONFIG_IRQ_TIME_ACCOUNTING -extern void irqtime_account_irq(struct task_struct *tsk); +extern void irqtime_account_irq(struct task_struct *tsk, unsigned int offset); #else -static inline void irqtime_account_irq(struct task_struct *tsk) { } +static inline void irqtime_account_irq(struct task_struct *tsk, unsigned int offset) { } #endif -static inline void account_irq_enter_time(struct task_struct *tsk) +static inline void account_softirq_enter(struct task_struct *tsk) +{ + vtime_account_irq(tsk, SOFTIRQ_OFFSET); + irqtime_account_irq(tsk, SOFTIRQ_OFFSET); +} + +static inline void account_softirq_exit(struct task_struct *tsk) +{ + vtime_account_softirq(tsk); + irqtime_account_irq(tsk, 0); +} + +static inline void account_hardirq_enter(struct task_struct *tsk) { - vtime_account_irq_enter(tsk); - irqtime_account_irq(tsk); + vtime_account_irq(tsk, HARDIRQ_OFFSET); + irqtime_account_irq(tsk, HARDIRQ_OFFSET); } -static inline void account_irq_exit_time(struct task_struct *tsk) +static inline void account_hardirq_exit(struct task_struct *tsk) { - vtime_account_irq_exit(tsk); - irqtime_account_irq(tsk); + vtime_account_hardirq(tsk); + irqtime_account_irq(tsk, 0); } #endif /* _LINUX_KERNEL_VTIME_H */ @ include/linux/wait.h:13 @ #include <asm/current.h> #include <uapi/linux/wait.h> +#include <linux/atomic.h> typedef struct wait_queue_entry wait_queue_entry_t; @ include/linux/ww_mutex.h:31 @ struct ww_class { unsigned int is_wait_die; }; +struct ww_mutex { + struct mutex base; + struct ww_acquire_ctx *ctx; +#ifdef CONFIG_DEBUG_MUTEXES + struct ww_class *ww_class; +#endif +}; + struct ww_acquire_ctx { struct task_struct *task; unsigned long stamp; @ include/net/gen_stats.h:9 @ #include <linux/socket.h> #include <linux/rtnetlink.h> #include <linux/pkt_sched.h> +#include <net/net_seq_lock.h> /* Note: this used to be in include/uapi/linux/gen_stats.h */ struct gnet_stats_basic_packed { @ include/net/gen_stats.h:46 @ int gnet_stats_start_copy_compat(struct sk_buff *skb, int type, spinlock_t *lock, struct gnet_dump *d, int padattr); -int gnet_stats_copy_basic(const seqcount_t *running, +int gnet_stats_copy_basic(net_seqlock_t *running, struct gnet_dump *d, struct gnet_stats_basic_cpu __percpu *cpu, struct gnet_stats_basic_packed *b); -void __gnet_stats_copy_basic(const seqcount_t *running, +void __gnet_stats_copy_basic(net_seqlock_t *running, struct gnet_stats_basic_packed *bstats, struct gnet_stats_basic_cpu __percpu *cpu, struct gnet_stats_basic_packed *b); -int gnet_stats_copy_basic_hw(const seqcount_t *running, +int gnet_stats_copy_basic_hw(net_seqlock_t *running, struct gnet_dump *d, struct gnet_stats_basic_cpu __percpu *cpu, struct gnet_stats_basic_packed *b); @ include/net/gen_stats.h:74 @ int gen_new_estimator(struct gnet_stats_basic_packed *bstats, struct gnet_stats_basic_cpu __percpu *cpu_bstats, struct net_rate_estimator __rcu **rate_est, spinlock_t *lock, - seqcount_t *running, struct nlattr *opt); + net_seqlock_t *running, struct nlattr *opt); void gen_kill_estimator(struct net_rate_estimator __rcu **ptr); int gen_replace_estimator(struct gnet_stats_basic_packed *bstats, struct gnet_stats_basic_cpu __percpu *cpu_bstats, struct net_rate_estimator __rcu **ptr, spinlock_t *lock, - seqcount_t *running, struct nlattr *opt); + net_seqlock_t *running, struct nlattr *opt); bool gen_estimator_active(struct net_rate_estimator __rcu **ptr); bool gen_estimator_read(struct net_rate_estimator __rcu **ptr, struct gnet_stats_rate_est64 *sample); @ include/net/net_seq_lock.h:4 @ +#ifndef __NET_NET_SEQ_LOCK_H__ +#define __NET_NET_SEQ_LOCK_H__ + +#ifdef CONFIG_PREEMPT_RT +# define net_seqlock_t seqlock_t +# define net_seq_begin(__r) read_seqbegin(__r) +# define net_seq_retry(__r, __s) read_seqretry(__r, __s) + +#else +# define net_seqlock_t seqcount_t +# define net_seq_begin(__r) read_seqcount_begin(__r) +# define net_seq_retry(__r, __s) read_seqcount_retry(__r, __s) +#endif + +#endif @ include/net/netns/xfrm.h:76 @ struct netns_xfrm { struct dst_ops xfrm6_dst_ops; #endif spinlock_t xfrm_state_lock; - seqcount_t xfrm_state_hash_generation; + seqcount_spinlock_t xfrm_state_hash_generation; seqcount_spinlock_t xfrm_policy_hash_generation; spinlock_t xfrm_policy_lock; @ include/net/sch_generic.h:13 @ #include <linux/percpu.h> #include <linux/dynamic_queue_limits.h> #include <linux/list.h> +#include <net/net_seq_lock.h> #include <linux/refcount.h> #include <linux/workqueue.h> #include <linux/mutex.h> @ include/net/sch_generic.h:105 @ struct Qdisc { struct sk_buff_head gso_skb ____cacheline_aligned_in_smp; struct qdisc_skb_head q; struct gnet_stats_basic_packed bstats; - seqcount_t running; + net_seqlock_t running; struct gnet_stats_queue qstats; unsigned long state; struct Qdisc *next_sched; @ include/net/sch_generic.h:146 @ static inline bool qdisc_is_running(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_NOLOCK) return spin_is_locked(&qdisc->seqlock); +#ifdef CONFIG_PREEMPT_RT + return spin_is_locked(&qdisc->running.lock) ? true : false; +#else return (raw_read_seqcount(&qdisc->running) & 1) ? true : false; +#endif } static inline bool qdisc_is_percpu_stats(const struct Qdisc *q) @ include/net/sch_generic.h:211 @ static inline bool qdisc_run_begin(struct Qdisc *qdisc) } else if (qdisc_is_running(qdisc)) { return false; } +#ifdef CONFIG_PREEMPT_RT + if (spin_trylock(&qdisc->running.lock)) { + seqcount_t *s = &qdisc->running.seqcount.seqcount; + /* + * Variant of write_seqcount_t_begin() telling lockdep that a + * trylock was attempted. + */ + raw_write_seqcount_t_begin(s); + seqcount_acquire(&s->dep_map, 0, 1, _RET_IP_); + return true; + } + return false; +#else /* Variant of write_seqcount_begin() telling lockdep a trylock * was attempted. */ raw_write_seqcount_begin(&qdisc->running); seqcount_acquire(&qdisc->running.dep_map, 0, 1, _RET_IP_); return true; +#endif } static inline void qdisc_run_end(struct Qdisc *qdisc) { +#ifdef CONFIG_PREEMPT_RT + write_sequnlock(&qdisc->running); +#else write_seqcount_end(&qdisc->running); +#endif if (qdisc->flags & TCQ_F_NOLOCK) { spin_unlock(&qdisc->seqlock); @ include/net/sch_generic.h:623 @ static inline spinlock_t *qdisc_root_sleeping_lock(const struct Qdisc *qdisc) return qdisc_lock(root); } -static inline seqcount_t *qdisc_root_sleeping_running(const struct Qdisc *qdisc) +static inline net_seqlock_t *qdisc_root_sleeping_running(const struct Qdisc *qdisc) { struct Qdisc *root = qdisc_root_sleeping(qdisc); @ include/trace/events/sched.h:653 @ DECLARE_TRACE(sched_update_nr_running_tp, TP_PROTO(struct rq *rq, int change), TP_ARGS(rq, change)); +DECLARE_TRACE(sched_migrate_disable_tp, + TP_PROTO(struct task_struct *p), + TP_ARGS(p)); + +DECLARE_TRACE(sched_migrate_enable_tp, + TP_PROTO(struct task_struct *p), + TP_ARGS(p)); + +DECLARE_TRACE(sched_migrate_pull_tp, + TP_PROTO(struct task_struct *p), + TP_ARGS(p)); + #endif /* _TRACE_SCHED_H */ /* This part must be outside protection */ @ init/Kconfig:864 @ config NUMA_BALANCING bool "Memory placement aware NUMA scheduler" depends on ARCH_SUPPORTS_NUMA_BALANCING depends on !ARCH_WANT_NUMA_VARIABLE_LOCALITY - depends on SMP && NUMA && MIGRATION + depends on SMP && NUMA && MIGRATION && !PREEMPT_RT help This option adds support for automatic NUMA aware memory/task placement. The mechanism is quite primitive and is based on migrating memory when @ init/Kconfig:971 @ config CFS_BANDWIDTH config RT_GROUP_SCHED bool "Group scheduling for SCHED_RR/FIFO" depends on CGROUP_SCHED + depends on !PREEMPT_RT default n help This feature lets you explicitly allocate real CPU bandwidth @ init/Kconfig:1909 @ choice config SLAB bool "SLAB" + depends on !PREEMPT_RT select HAVE_HARDENED_USERCOPY_ALLOCATOR help The regular slab allocator that is established and known to work @ init/Kconfig:1930 @ config SLUB config SLOB depends on EXPERT bool "SLOB (Simple Allocator)" + depends on !PREEMPT_RT help SLOB replaces the stock allocator with a drastically simpler allocator. SLOB is generally more space efficient but @ init/Kconfig:1997 @ config SHUFFLE_PAGE_ALLOCATOR config SLUB_CPU_PARTIAL default y - depends on SLUB && SMP + depends on SLUB && SMP && !PREEMPT_RT bool "SLUB per cpu partial cache" help Per cpu partial caches accelerate objects allocation and freeing @ kernel/Kconfig.locks:254 @ config ARCH_USE_QUEUED_RWLOCKS config QUEUED_RWLOCKS def_bool y if ARCH_USE_QUEUED_RWLOCKS - depends on SMP + depends on SMP && !PREEMPT_RT config ARCH_HAS_MMIOWB bool @ kernel/Kconfig.preempt:4 @ # SPDX-License-Identifier: GPL-2.0-only +config HAVE_PREEMPT_LAZY + bool + +config PREEMPT_LAZY + def_bool y if HAVE_PREEMPT_LAZY && PREEMPT_RT + choice prompt "Preemption Model" default PREEMPT_NONE @ kernel/Kconfig.preempt:68 @ config PREEMPT_RT bool "Fully Preemptible Kernel (Real-Time)" depends on EXPERT && ARCH_SUPPORTS_RT select PREEMPTION + select RT_MUTEXES help This option turns the kernel into a real-time kernel by replacing various locking primitives (spinlocks, rwlocks, etc.) with @ kernel/cgroup/cpuset.c:348 @ void cpuset_read_unlock(void) percpu_up_read(&cpuset_rwsem); } -static DEFINE_SPINLOCK(callback_lock); +static DEFINE_RAW_SPINLOCK(callback_lock); static struct workqueue_struct *cpuset_migrate_mm_wq; @ kernel/cgroup/cpuset.c:1285 @ static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, * Newly added CPUs will be removed from effective_cpus and * newly deleted ones will be added back to effective_cpus. */ - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); if (adding) { cpumask_or(parent->subparts_cpus, parent->subparts_cpus, tmp->addmask); @ kernel/cgroup/cpuset.c:1307 @ static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, if (cpuset->partition_root_state != new_prs) cpuset->partition_root_state = new_prs; - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); return cmd == partcmd_update; } @ kernel/cgroup/cpuset.c:1410 @ static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp) continue; rcu_read_unlock(); - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); cpumask_copy(cp->effective_cpus, tmp->new_cpus); if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) { @ kernel/cgroup/cpuset.c:1444 @ static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp) if (new_prs != cp->partition_root_state) cp->partition_root_state = new_prs; - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); WARN_ON(!is_in_v2_mode() && !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); @ kernel/cgroup/cpuset.c:1562 @ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, return -EINVAL; } - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); /* @ kernel/cgroup/cpuset.c:1573 @ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, cs->cpus_allowed); cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); } - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); update_cpumasks_hier(cs, &tmp); @ kernel/cgroup/cpuset.c:1767 @ static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) continue; rcu_read_unlock(); - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); cp->effective_mems = *new_mems; - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); WARN_ON(!is_in_v2_mode() && !nodes_equal(cp->mems_allowed, cp->effective_mems)); @ kernel/cgroup/cpuset.c:1837 @ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, if (retval < 0) goto done; - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); cs->mems_allowed = trialcs->mems_allowed; - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); /* use trialcs->mems_allowed as a temp variable */ update_nodemasks_hier(cs, &trialcs->mems_allowed); @ kernel/cgroup/cpuset.c:1930 @ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) || (is_spread_page(cs) != is_spread_page(trialcs))); - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); cs->flags = trialcs->flags; - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) rebuild_sched_domains_locked(); @ kernel/cgroup/cpuset.c:2023 @ static int update_prstate(struct cpuset *cs, int new_prs) rebuild_sched_domains_locked(); out: if (!err) { - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); cs->partition_root_state = new_prs; - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); } free_cpumasks(NULL, &tmpmask); @ kernel/cgroup/cpuset.c:2441 @ static int cpuset_common_seq_show(struct seq_file *sf, void *v) cpuset_filetype_t type = seq_cft(sf)->private; int ret = 0; - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); switch (type) { case FILE_CPULIST: @ kernel/cgroup/cpuset.c:2463 @ static int cpuset_common_seq_show(struct seq_file *sf, void *v) ret = -EINVAL; } - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); return ret; } @ kernel/cgroup/cpuset.c:2776 @ static int cpuset_css_online(struct cgroup_subsys_state *css) cpuset_inc(); - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); if (is_in_v2_mode()) { cpumask_copy(cs->effective_cpus, parent->effective_cpus); cs->effective_mems = parent->effective_mems; cs->use_parent_ecpus = true; parent->child_ecpus_count++; } - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) goto out_unlock; @ kernel/cgroup/cpuset.c:2810 @ static int cpuset_css_online(struct cgroup_subsys_state *css) } rcu_read_unlock(); - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); cs->mems_allowed = parent->mems_allowed; cs->effective_mems = parent->mems_allowed; cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); cpumask_copy(cs->effective_cpus, parent->cpus_allowed); - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); out_unlock: percpu_up_write(&cpuset_rwsem); put_online_cpus(); @ kernel/cgroup/cpuset.c:2871 @ static void cpuset_css_free(struct cgroup_subsys_state *css) static void cpuset_bind(struct cgroup_subsys_state *root_css) { percpu_down_write(&cpuset_rwsem); - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); if (is_in_v2_mode()) { cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); @ kernel/cgroup/cpuset.c:2882 @ static void cpuset_bind(struct cgroup_subsys_state *root_css) top_cpuset.mems_allowed = top_cpuset.effective_mems; } - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); percpu_up_write(&cpuset_rwsem); } @ kernel/cgroup/cpuset.c:2979 @ hotplug_update_tasks_legacy(struct cpuset *cs, { bool is_empty; - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); cpumask_copy(cs->cpus_allowed, new_cpus); cpumask_copy(cs->effective_cpus, new_cpus); cs->mems_allowed = *new_mems; cs->effective_mems = *new_mems; - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); /* * Don't call update_tasks_cpumask() if the cpuset becomes empty, @ kernel/cgroup/cpuset.c:3021 @ hotplug_update_tasks(struct cpuset *cs, if (nodes_empty(*new_mems)) *new_mems = parent_cs(cs)->effective_mems; - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); cpumask_copy(cs->effective_cpus, new_cpus); cs->effective_mems = *new_mems; - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); if (cpus_updated) update_tasks_cpumask(cs); @ kernel/cgroup/cpuset.c:3091 @ static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) if (is_partition_root(cs) && (cpumask_empty(&new_cpus) || (parent->partition_root_state == PRS_ERROR))) { if (cs->nr_subparts_cpus) { - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); cs->nr_subparts_cpus = 0; cpumask_clear(cs->subparts_cpus); - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); compute_effective_cpumask(&new_cpus, cs, parent); } @ kernel/cgroup/cpuset.c:3108 @ static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) cpumask_empty(&new_cpus)) { update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp); - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); cs->partition_root_state = PRS_ERROR; - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); } cpuset_force_rebuild(); } @ kernel/cgroup/cpuset.c:3190 @ static void cpuset_hotplug_workfn(struct work_struct *work) /* synchronize cpus_allowed to cpu_active_mask */ if (cpus_updated) { - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); if (!on_dfl) cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); /* @ kernel/cgroup/cpuset.c:3210 @ static void cpuset_hotplug_workfn(struct work_struct *work) } } cpumask_copy(top_cpuset.effective_cpus, &new_cpus); - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); /* we don't mess with cpumasks of tasks in top_cpuset */ } /* synchronize mems_allowed to N_MEMORY */ if (mems_updated) { - spin_lock_irq(&callback_lock); + raw_spin_lock_irq(&callback_lock); if (!on_dfl) top_cpuset.mems_allowed = new_mems; top_cpuset.effective_mems = new_mems; - spin_unlock_irq(&callback_lock); + raw_spin_unlock_irq(&callback_lock); update_tasks_nodemask(&top_cpuset); } @ kernel/cgroup/cpuset.c:3321 @ void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) { unsigned long flags; - spin_lock_irqsave(&callback_lock, flags); + raw_spin_lock_irqsave(&callback_lock, flags); rcu_read_lock(); guarantee_online_cpus(task_cs(tsk), pmask); rcu_read_unlock(); - spin_unlock_irqrestore(&callback_lock, flags); + raw_spin_unlock_irqrestore(&callback_lock, flags); } /** @ kernel/cgroup/cpuset.c:3386 @ nodemask_t cpuset_mems_allowed(struct task_struct *tsk) nodemask_t mask; unsigned long flags; - spin_lock_irqsave(&callback_lock, flags); + raw_spin_lock_irqsave(&callback_lock, flags); rcu_read_lock(); guarantee_online_mems(task_cs(tsk), &mask); rcu_read_unlock(); - spin_unlock_irqrestore(&callback_lock, flags); + raw_spin_unlock_irqrestore(&callback_lock, flags); return mask; } @ kernel/cgroup/cpuset.c:3482 @ bool __cpuset_node_allowed(int node, gfp_t gfp_mask) return true; /* Not hardwall and node outside mems_allowed: scan up cpusets */ - spin_lock_irqsave(&callback_lock, flags); + raw_spin_lock_irqsave(&callback_lock, flags); rcu_read_lock(); cs = nearest_hardwall_ancestor(task_cs(current)); allowed = node_isset(node, cs->mems_allowed); rcu_read_unlock(); - spin_unlock_irqrestore(&callback_lock, flags); + raw_spin_unlock_irqrestore(&callback_lock, flags); return allowed; } @ kernel/cgroup/rstat.c:152 @ static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep) raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); struct cgroup *pos = NULL; + unsigned long flags; - raw_spin_lock(cpu_lock); + raw_spin_lock_irqsave(cpu_lock, flags); while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) { struct cgroup_subsys_state *css; @ kernel/cgroup/rstat.c:166 @ static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep) css->ss->css_rstat_flush(css, cpu); rcu_read_unlock(); } - raw_spin_unlock(cpu_lock); + raw_spin_unlock_irqrestore(cpu_lock, flags); /* if @may_sleep, play nice and yield if necessary */ if (may_sleep && (need_resched() || @ kernel/cpu.c:1665 @ static struct cpuhp_step cpuhp_hp_states[] = { .name = "ap:online", }, /* - * Handled on controll processor until the plugged processor manages + * Handled on control processor until the plugged processor manages * this itself. */ [CPUHP_TEARDOWN_CPU] = { @ kernel/cpu.c:1674 @ static struct cpuhp_step cpuhp_hp_states[] = { .teardown.single = takedown_cpu, .cant_stop = true, }, + + [CPUHP_AP_SCHED_WAIT_EMPTY] = { + .name = "sched:waitempty", + .startup.single = NULL, + .teardown.single = sched_cpu_wait_empty, + }, + /* Handle smpboot threads park/unpark */ [CPUHP_AP_SMPBOOT_THREADS] = { .name = "smpboot/threads:online", @ kernel/debug/kdb/kdb_main.c:2104 @ static int kdb_dmesg(int argc, const char **argv) int adjust = 0; int n = 0; int skip = 0; - struct kmsg_dumper dumper = { .active = 1 }; + struct kmsg_dumper_iter iter = { .active = 1 }; size_t len; char buf[201]; @ kernel/debug/kdb/kdb_main.c:2129 @ static int kdb_dmesg(int argc, const char **argv) kdb_set(2, setargs); } - kmsg_dump_rewind_nolock(&dumper); - while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL)) + kmsg_dump_rewind(&iter); + while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL)) n++; if (lines < 0) { @ kernel/debug/kdb/kdb_main.c:2162 @ static int kdb_dmesg(int argc, const char **argv) if (skip >= n || skip < 0) return 0; - kmsg_dump_rewind_nolock(&dumper); - while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) { + kmsg_dump_rewind(&iter); + while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) { if (skip) { skip--; continue; @ kernel/entry/common.c:5 @ #include <linux/context_tracking.h> #include <linux/entry-common.h> +#include <linux/highmem.h> #include <linux/livepatch.h> #include <linux/audit.h> @ kernel/entry/common.c:152 @ static unsigned long exit_to_user_mode_loop(struct pt_regs *regs, local_irq_enable_exit_to_user(ti_work); - if (ti_work & _TIF_NEED_RESCHED) + if (ti_work & _TIF_NEED_RESCHED_MASK) schedule(); +#ifdef ARCH_RT_DELAYS_SIGNAL_SEND + if (unlikely(current->forced_info.si_signo)) { + struct task_struct *t = current; + force_sig_info(&t->forced_info); + t->forced_info.si_signo = 0; + } +#endif + if (ti_work & _TIF_UPROBE) uprobe_notify_resume(regs); @ kernel/entry/common.c:206 @ static void exit_to_user_mode_prepare(struct pt_regs *regs) /* Ensure that the address limit is intact and no locks are held */ addr_limit_user_check(); + kmap_assert_nomap(); lockdep_assert_irqs_disabled(); lockdep_sys_exit(); } @ kernel/entry/common.c:366 @ void irqentry_exit_cond_resched(void) rcu_irq_exit_check_preempt(); if (IS_ENABLED(CONFIG_DEBUG_ENTRY)) WARN_ON_ONCE(!on_thread_stack()); - if (need_resched()) + if (should_resched(0)) preempt_schedule_irq(); } } @ kernel/exit.c:155 @ static void __exit_signal(struct task_struct *tsk) * Do this under ->siglock, we can race with another thread * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. */ - flush_sigqueue(&tsk->pending); + flush_task_sigqueue(tsk); tsk->sighand = NULL; spin_unlock(&sighand->siglock); @ kernel/fork.c:45 @ #include <linux/mmu_notifier.h> #include <linux/fs.h> #include <linux/mm.h> +#include <linux/kprobes.h> #include <linux/vmacache.h> #include <linux/nsproxy.h> #include <linux/capability.h> @ kernel/fork.c:292 @ static inline void free_thread_stack(struct task_struct *tsk) return; } - vfree_atomic(tsk->stack); + vfree(tsk->stack); return; } #endif @ kernel/fork.c:692 @ void __mmdrop(struct mm_struct *mm) } EXPORT_SYMBOL_GPL(__mmdrop); +#ifdef CONFIG_PREEMPT_RT +/* + * RCU callback for delayed mm drop. Not strictly rcu, but we don't + * want another facility to make this work. + */ +void __mmdrop_delayed(struct rcu_head *rhp) +{ + struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop); + + __mmdrop(mm); +} +#endif + static void mmdrop_async_fn(struct work_struct *work) { struct mm_struct *mm; @ kernel/fork.c:746 @ void __put_task_struct(struct task_struct *tsk) WARN_ON(refcount_read(&tsk->usage)); WARN_ON(tsk == current); + /* + * Remove function-return probe instances associated with this + * task and put them back on the free list. + */ + kprobe_flush_task(tsk); + + /* Task is done with its stack. */ + put_task_stack(tsk); + io_uring_free(tsk); cgroup_free(tsk); task_numa_free(tsk, true); @ kernel/fork.c:952 @ static struct task_struct *dup_task_struct(struct task_struct *orig, int node) tsk->splice_pipe = NULL; tsk->task_frag.page = NULL; tsk->wake_q.next = NULL; + tsk->wake_q_sleeper.next = NULL; account_kernel_stack(tsk, 1); kcov_task_init(tsk); + kmap_local_fork(tsk); #ifdef CONFIG_FAULT_INJECTION tsk->fail_nth = 0; @ kernel/fork.c:2029 @ static __latent_entropy struct task_struct *copy_process( spin_lock_init(&p->alloc_lock); init_sigpending(&p->pending); + p->sigqueue_cache = NULL; p->utime = p->stime = p->gtime = 0; #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME @ kernel/futex.c:1501 @ static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_ struct task_struct *new_owner; bool postunlock = false; DEFINE_WAKE_Q(wake_q); + DEFINE_WAKE_Q(wake_sleeper_q); int ret = 0; new_owner = rt_mutex_next_owner(&pi_state->pi_mutex); @ kernel/futex.c:1551 @ static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_ * not fail. */ pi_state_update_owner(pi_state, new_owner); - postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q); + postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q, + &wake_sleeper_q); } out_unlock: raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); if (postunlock) - rt_mutex_postunlock(&wake_q); + rt_mutex_postunlock(&wake_q, &wake_sleeper_q); return ret; } @ kernel/futex.c:2160 @ static int futex_requeue(u32 __user *uaddr1, unsigned int flags, */ requeue_pi_wake_futex(this, &key2, hb2); continue; + } else if (ret == -EAGAIN) { + /* + * Waiter was woken by timeout or + * signal and has set pi_blocked_on to + * PI_WAKEUP_INPROGRESS before we + * tried to enqueue it on the rtmutex. + */ + this->pi_state = NULL; + put_pi_state(pi_state); + continue; } else if (ret) { /* * rt_mutex_start_proxy_lock() detected a @ kernel/futex.c:2862 @ static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, goto no_block; } - rt_mutex_init_waiter(&rt_waiter); + rt_mutex_init_waiter(&rt_waiter, false); /* * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not @ kernel/futex.c:3187 @ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, { struct hrtimer_sleeper timeout, *to; struct rt_mutex_waiter rt_waiter; - struct futex_hash_bucket *hb; + struct futex_hash_bucket *hb, *hb2; union futex_key key2 = FUTEX_KEY_INIT; struct futex_q q = futex_q_init; int res, ret; @ kernel/futex.c:3208 @ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, * The waiter is allocated on our stack, manipulated by the requeue * code while we sleep on uaddr. */ - rt_mutex_init_waiter(&rt_waiter); + rt_mutex_init_waiter(&rt_waiter, false); ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE); if (unlikely(ret != 0)) @ kernel/futex.c:3239 @ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, /* Queue the futex_q, drop the hb lock, wait for wakeup. */ futex_wait_queue_me(hb, &q, to); - spin_lock(&hb->lock); - ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to); - spin_unlock(&hb->lock); - if (ret) - goto out; + /* + * On RT we must avoid races with requeue and trying to block + * on two mutexes (hb->lock and uaddr2's rtmutex) by + * serializing access to pi_blocked_on with pi_lock. + */ + raw_spin_lock_irq(¤t->pi_lock); + if (current->pi_blocked_on) { + /* + * We have been requeued or are in the process of + * being requeued. + */ + raw_spin_unlock_irq(¤t->pi_lock); + } else { + /* + * Setting pi_blocked_on to PI_WAKEUP_INPROGRESS + * prevents a concurrent requeue from moving us to the + * uaddr2 rtmutex. After that we can safely acquire + * (and possibly block on) hb->lock. + */ + current->pi_blocked_on = PI_WAKEUP_INPROGRESS; + raw_spin_unlock_irq(¤t->pi_lock); + + spin_lock(&hb->lock); + + /* + * Clean up pi_blocked_on. We might leak it otherwise + * when we succeeded with the hb->lock in the fast + * path. + */ + raw_spin_lock_irq(¤t->pi_lock); + current->pi_blocked_on = NULL; + raw_spin_unlock_irq(¤t->pi_lock); + + ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to); + spin_unlock(&hb->lock); + if (ret) + goto out; + } /* - * In order for us to be here, we know our q.key == key2, and since - * we took the hb->lock above, we also know that futex_requeue() has - * completed and we no longer have to concern ourselves with a wakeup - * race with the atomic proxy lock acquisition by the requeue code. The - * futex_requeue dropped our key1 reference and incremented our key2 - * reference count. + * In order to be here, we have either been requeued, are in + * the process of being requeued, or requeue successfully + * acquired uaddr2 on our behalf. If pi_blocked_on was + * non-null above, we may be racing with a requeue. Do not + * rely on q->lock_ptr to be hb2->lock until after blocking on + * hb->lock or hb2->lock. The futex_requeue dropped our key1 + * reference and incremented our key2 reference count. */ + hb2 = hash_futex(&key2); /* Check if the requeue code acquired the second futex for us. */ if (!q.rt_waiter) { @ kernel/futex.c:3296 @ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, * did a lock-steal - fix up the PI-state in that case. */ if (q.pi_state && (q.pi_state->owner != current)) { - spin_lock(q.lock_ptr); + spin_lock(&hb2->lock); + BUG_ON(&hb2->lock != q.lock_ptr); ret = fixup_pi_state_owner(uaddr2, &q, current); /* * Drop the reference to the pi state which * the requeue_pi() code acquired for us. */ put_pi_state(q.pi_state); - spin_unlock(q.lock_ptr); + spin_unlock(&hb2->lock); /* * Adjust the return value. It's either -EFAULT or * success (1) but the caller expects 0 for success. @ kernel/futex.c:3323 @ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, pi_mutex = &q.pi_state->pi_mutex; ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter); - spin_lock(q.lock_ptr); + spin_lock(&hb2->lock); + BUG_ON(&hb2->lock != q.lock_ptr); if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter)) ret = 0; @ kernel/irq/handle.c:195 @ irqreturn_t handle_irq_event_percpu(struct irq_desc *desc) { irqreturn_t retval; unsigned int flags = 0; + struct pt_regs *regs = get_irq_regs(); + u64 ip = regs ? instruction_pointer(regs) : 0; retval = __handle_irq_event_percpu(desc, &flags); - add_interrupt_randomness(desc->irq_data.irq, flags); +#ifdef CONFIG_PREEMPT_RT + desc->random_ip = ip; +#else + add_interrupt_randomness(desc->irq_data.irq, flags, ip); +#endif if (!noirqdebug) note_interrupt(desc, retval); @ kernel/irq/manage.c:1162 @ static int irq_thread(void *data) irqreturn_t (*handler_fn)(struct irq_desc *desc, struct irqaction *action); + sched_set_fifo(current); + if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, &action->thread_flags)) handler_fn = irq_forced_thread_fn; @ kernel/irq/manage.c:1184 @ static int irq_thread(void *data) if (action_ret == IRQ_WAKE_THREAD) irq_wake_secondary(desc, action); + if (IS_ENABLED(CONFIG_PREEMPT_RT)) { + migrate_disable(); + add_interrupt_randomness(action->irq, 0, + desc->random_ip ^ (unsigned long) action); + migrate_enable(); + } wake_threads_waitq(desc); } @ kernel/irq/manage.c:1335 @ setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) if (IS_ERR(t)) return PTR_ERR(t); - sched_set_fifo(t); - /* * We keep the reference to the task struct even if * the thread dies to avoid that the interrupt code @ kernel/irq/manage.c:2724 @ EXPORT_SYMBOL_GPL(irq_get_irqchip_state); * This call sets the internal irqchip state of an interrupt, * depending on the value of @which. * - * This function should be called with preemption disabled if the + * This function should be called with migration disabled if the * interrupt controller has per-cpu registers. */ int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, @ kernel/irq/spurious.c:446 @ MODULE_PARM_DESC(noirqdebug, "Disable irq lockup detection when true"); static int __init irqfixup_setup(char *str) { +#ifdef CONFIG_PREEMPT_RT + pr_warn("irqfixup boot option not supported w/ CONFIG_PREEMPT_RT\n"); + return 1; +#endif irqfixup = 1; printk(KERN_WARNING "Misrouted IRQ fixup support enabled.\n"); printk(KERN_WARNING "This may impact system performance.\n"); @ kernel/irq/spurious.c:462 @ module_param(irqfixup, int, 0644); static int __init irqpoll_setup(char *str) { +#ifdef CONFIG_PREEMPT_RT + pr_warn("irqpoll boot option not supported w/ CONFIG_PREEMPT_RT\n"); + return 1; +#endif irqfixup = 2; printk(KERN_WARNING "Misrouted IRQ fixup and polling support " "enabled\n"); @ kernel/irq_work.c:21 @ #include <linux/cpu.h> #include <linux/notifier.h> #include <linux/smp.h> +#include <linux/smpboot.h> +#include <linux/interrupt.h> #include <asm/processor.h> static DEFINE_PER_CPU(struct llist_head, raised_list); static DEFINE_PER_CPU(struct llist_head, lazy_list); +static DEFINE_PER_CPU(struct task_struct *, irq_workd); + +static void wake_irq_workd(void) +{ + struct task_struct *tsk = __this_cpu_read(irq_workd); + + if (!llist_empty(this_cpu_ptr(&lazy_list)) && tsk) + wake_up_process(tsk); +} + +#ifdef CONFIG_SMP +static void irq_work_wake(struct irq_work *entry) +{ + wake_irq_workd(); +} + +static DEFINE_PER_CPU(struct irq_work, irq_work_wakeup) = + IRQ_WORK_INIT_HARD(irq_work_wake); +#endif + +static int irq_workd_should_run(unsigned int cpu) +{ + return !llist_empty(this_cpu_ptr(&lazy_list)); +} /* * Claim the entry so that no one else will poke at it. @ kernel/irq_work.c:81 @ void __weak arch_irq_work_raise(void) /* Enqueue on current CPU, work must already be claimed and preempt disabled */ static void __irq_work_queue_local(struct irq_work *work) { + struct llist_head *list; + bool rt_lazy_work = false; + bool lazy_work = false; + int work_flags; + + work_flags = atomic_read(&work->flags); + if (work_flags & IRQ_WORK_LAZY) + lazy_work = true; + else if (IS_ENABLED(CONFIG_PREEMPT_RT) && + !(work_flags & IRQ_WORK_HARD_IRQ)) + rt_lazy_work = true; + + if (lazy_work || rt_lazy_work) + list = this_cpu_ptr(&lazy_list); + else + list = this_cpu_ptr(&raised_list); + + if (!llist_add(&work->llnode, list)) + return; + /* If the work is "lazy", handle it from next tick if any */ - if (atomic_read(&work->flags) & IRQ_WORK_LAZY) { - if (llist_add(&work->llnode, this_cpu_ptr(&lazy_list)) && - tick_nohz_tick_stopped()) - arch_irq_work_raise(); - } else { - if (llist_add(&work->llnode, this_cpu_ptr(&raised_list))) - arch_irq_work_raise(); - } + if (!lazy_work || tick_nohz_tick_stopped()) + arch_irq_work_raise(); } /* Enqueue the irq work @work on the current CPU */ @ kernel/irq_work.c:145 @ bool irq_work_queue_on(struct irq_work *work, int cpu) if (cpu != smp_processor_id()) { /* Arch remote IPI send/receive backend aren't NMI safe */ WARN_ON_ONCE(in_nmi()); + + /* + * On PREEMPT_RT the items which are not marked as + * IRQ_WORK_HARD_IRQ are added to the lazy list and a HARD work + * item is used on the remote CPU to wake the thread. + */ + if (IS_ENABLED(CONFIG_PREEMPT_RT) && + !(atomic_read(&work->flags) & IRQ_WORK_HARD_IRQ)) { + + if (!llist_add(&work->llnode, &per_cpu(lazy_list, cpu))) + goto out; + + work = &per_cpu(irq_work_wakeup, cpu); + if (!irq_work_claim(work)) + goto out; + } + __smp_call_single_queue(cpu, &work->llnode); } else { __irq_work_queue_local(work); } +out: preempt_enable(); return true; @ kernel/irq_work.c:181 @ bool irq_work_needs_cpu(void) raised = this_cpu_ptr(&raised_list); lazy = this_cpu_ptr(&lazy_list); - if (llist_empty(raised) || arch_irq_work_has_interrupt()) - if (llist_empty(lazy)) - return false; + if (llist_empty(raised) && llist_empty(lazy)) + return false; /* All work should have been flushed before going offline */ WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); @ kernel/irq_work.c:213 @ void irq_work_single(void *arg) */ flags &= ~IRQ_WORK_PENDING; (void)atomic_cmpxchg(&work->flags, flags, flags & ~IRQ_WORK_BUSY); + + if ((IS_ENABLED(CONFIG_PREEMPT_RT) && !irq_work_is_hard(work)) || + !arch_irq_work_has_interrupt()) + rcuwait_wake_up(&work->irqwait); } static void irq_work_run_list(struct llist_head *list) @ kernel/irq_work.c:224 @ static void irq_work_run_list(struct llist_head *list) struct irq_work *work, *tmp; struct llist_node *llnode; - BUG_ON(!irqs_disabled()); + /* + * On PREEMPT_RT IRQ-work which is not marked as HARD will be processed + * in a per-CPU thread in preemptible context. Only the items which are + * marked as IRQ_WORK_HARD_IRQ will be processed in hardirq context. + */ + BUG_ON(!irqs_disabled() && !IS_ENABLED(CONFIG_PREEMPT_RT)); if (llist_empty(list)) return; @ kernel/irq_work.c:246 @ static void irq_work_run_list(struct llist_head *list) void irq_work_run(void) { irq_work_run_list(this_cpu_ptr(&raised_list)); - irq_work_run_list(this_cpu_ptr(&lazy_list)); + if (!IS_ENABLED(CONFIG_PREEMPT_RT)) + irq_work_run_list(this_cpu_ptr(&lazy_list)); + else + wake_irq_workd(); } EXPORT_SYMBOL_GPL(irq_work_run); @ kernel/irq_work.c:259 @ void irq_work_tick(void) if (!llist_empty(raised) && !arch_irq_work_has_interrupt()) irq_work_run_list(raised); - irq_work_run_list(this_cpu_ptr(&lazy_list)); + + if (!IS_ENABLED(CONFIG_PREEMPT_RT)) + irq_work_run_list(this_cpu_ptr(&lazy_list)); + else + wake_irq_workd(); } /* @ kernel/irq_work.c:273 @ void irq_work_tick(void) void irq_work_sync(struct irq_work *work) { lockdep_assert_irqs_enabled(); + might_sleep(); + + if ((IS_ENABLED(CONFIG_PREEMPT_RT) && !irq_work_is_hard(work)) || + !arch_irq_work_has_interrupt()) { + rcuwait_wait_event(&work->irqwait, !irq_work_is_busy(work), + TASK_UNINTERRUPTIBLE); + return; + } while (atomic_read(&work->flags) & IRQ_WORK_BUSY) cpu_relax(); } EXPORT_SYMBOL_GPL(irq_work_sync); + +static void run_irq_workd(unsigned int cpu) +{ + irq_work_run_list(this_cpu_ptr(&lazy_list)); +} + +static void irq_workd_setup(unsigned int cpu) +{ + sched_set_fifo_low(current); +} + +static struct smp_hotplug_thread irqwork_threads = { + .store = &irq_workd, + .setup = irq_workd_setup, + .thread_should_run = irq_workd_should_run, + .thread_fn = run_irq_workd, + .thread_comm = "irq_work/%u", +}; + +static __init int irq_work_init_threads(void) +{ + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + BUG_ON(smpboot_register_percpu_thread(&irqwork_threads)); + return 0; +} +early_initcall(irq_work_init_threads); @ kernel/kexec_core.c:981 @ void crash_kexec(struct pt_regs *regs) old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); if (old_cpu == PANIC_CPU_INVALID) { /* This is the 1st CPU which comes here, so go ahead. */ - printk_safe_flush_on_panic(); __crash_kexec(regs); /* @ kernel/ksysfs.c:141 @ KERNEL_ATTR_RO(vmcoreinfo); #endif /* CONFIG_CRASH_CORE */ +#if defined(CONFIG_PREEMPT_RT) +static ssize_t realtime_show(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + return sprintf(buf, "%d\n", 1); +} +KERNEL_ATTR_RO(realtime); +#endif + /* whether file capabilities are enabled */ static ssize_t fscaps_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) @ kernel/ksysfs.c:240 @ static struct attribute * kernel_attrs[] = { #ifndef CONFIG_TINY_RCU &rcu_expedited_attr.attr, &rcu_normal_attr.attr, +#endif +#ifdef CONFIG_PREEMPT_RT + &realtime_attr.attr, #endif NULL }; @ kernel/kthread.c:267 @ EXPORT_SYMBOL_GPL(kthread_parkme); static int kthread(void *_create) { + static const struct sched_param param = { .sched_priority = 0 }; /* Copy data: it's on kthread's stack */ struct kthread_create_info *create = _create; int (*threadfn)(void *data) = create->threadfn; @ kernel/kthread.c:298 @ static int kthread(void *_create) init_completion(&self->parked); current->vfork_done = &self->exited; + /* + * The new thread inherited kthreadd's priority and CPU mask. Reset + * back to default in case they have been changed. + */ + sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m); + set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_KTHREAD)); + /* OK, tell user we're spawned, wait for stop or wakeup */ __set_current_state(TASK_UNINTERRUPTIBLE); create->result = current; @ kernel/kthread.c:402 @ struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), } task = create->result; if (!IS_ERR(task)) { - static const struct sched_param param = { .sched_priority = 0 }; char name[TASK_COMM_LEN]; /* @ kernel/kthread.c:410 @ struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), */ vsnprintf(name, sizeof(name), namefmt, args); set_task_comm(task, name); - /* - * root may have changed our (kthreadd's) priority or CPU mask. - * The kernel thread should not inherit these properties. - */ - sched_setscheduler_nocheck(task, SCHED_NORMAL, ¶m); - set_cpus_allowed_ptr(task, - housekeeping_cpumask(HK_FLAG_KTHREAD)); } kfree(create); return task; @ kernel/locking/Makefile:6 @ # and is generally not a function of system call inputs. KCOV_INSTRUMENT := n -obj-y += mutex.o semaphore.o rwsem.o percpu-rwsem.o +obj-y += semaphore.o rwsem.o percpu-rwsem.o # Avoid recursion lockdep -> KCSAN -> ... -> lockdep. KCSAN_SANITIZE_lockdep.o := n @ kernel/locking/Makefile:18 @ CFLAGS_REMOVE_mutex-debug.o = $(CC_FLAGS_FTRACE) CFLAGS_REMOVE_rtmutex-debug.o = $(CC_FLAGS_FTRACE) endif -obj-$(CONFIG_DEBUG_MUTEXES) += mutex-debug.o obj-$(CONFIG_LOCKDEP) += lockdep.o ifeq ($(CONFIG_PROC_FS),y) obj-$(CONFIG_LOCKDEP) += lockdep_proc.o endif obj-$(CONFIG_SMP) += spinlock.o -obj-$(CONFIG_LOCK_SPIN_ON_OWNER) += osq_lock.o obj-$(CONFIG_PROVE_LOCKING) += spinlock.o obj-$(CONFIG_QUEUED_SPINLOCKS) += qspinlock.o obj-$(CONFIG_RT_MUTEXES) += rtmutex.o obj-$(CONFIG_DEBUG_RT_MUTEXES) += rtmutex-debug.o obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock.o obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock_debug.o +ifneq ($(CONFIG_PREEMPT_RT),y) +obj-y += mutex.o +obj-$(CONFIG_LOCK_SPIN_ON_OWNER) += osq_lock.o +obj-$(CONFIG_DEBUG_MUTEXES) += mutex-debug.o +endif +obj-$(CONFIG_PREEMPT_RT) += mutex-rt.o rwsem-rt.o rwlock-rt.o obj-$(CONFIG_QUEUED_RWLOCKS) += qrwlock.o obj-$(CONFIG_LOCK_TORTURE_TEST) += locktorture.o obj-$(CONFIG_WW_MUTEX_SELFTEST) += test-ww_mutex.o @ kernel/locking/lockdep.c:5413 @ static noinstr void check_flags(unsigned long flags) } } +#ifndef CONFIG_PREEMPT_RT /* * We dont accurately track softirq state in e.g. * hardirq contexts (such as on 4KSTACKS), so only @ kernel/locking/lockdep.c:5428 @ static noinstr void check_flags(unsigned long flags) DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); } } +#endif if (!debug_locks) print_irqtrace_events(current); @ kernel/locking/mutex-rt.c:4 @ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Real-Time Preemption Support + * + * started by Ingo Molnar: + * + * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> + * Copyright (C) 2006, Timesys Corp., Thomas Gleixner <tglx@timesys.com> + * + * historic credit for proving that Linux spinlocks can be implemented via + * RT-aware mutexes goes to many people: The Pmutex project (Dirk Grambow + * and others) who prototyped it on 2.4 and did lots of comparative + * research and analysis; TimeSys, for proving that you can implement a + * fully preemptible kernel via the use of IRQ threading and mutexes; + * Bill Huey for persuasively arguing on lkml that the mutex model is the + * right one; and to MontaVista, who ported pmutexes to 2.6. + * + * This code is a from-scratch implementation and is not based on pmutexes, + * but the idea of converting spinlocks to mutexes is used here too. + * + * lock debugging, locking tree, deadlock detection: + * + * Copyright (C) 2004, LynuxWorks, Inc., Igor Manyilov, Bill Huey + * Released under the General Public License (GPL). + * + * Includes portions of the generic R/W semaphore implementation from: + * + * Copyright (c) 2001 David Howells (dhowells@redhat.com). + * - Derived partially from idea by Andrea Arcangeli <andrea@suse.de> + * - Derived also from comments by Linus + * + * Pending ownership of locks and ownership stealing: + * + * Copyright (C) 2005, Kihon Technologies Inc., Steven Rostedt + * + * (also by Steven Rostedt) + * - Converted single pi_lock to individual task locks. + * + * By Esben Nielsen: + * Doing priority inheritance with help of the scheduler. + * + * Copyright (C) 2006, Timesys Corp., Thomas Gleixner <tglx@timesys.com> + * - major rework based on Esben Nielsens initial patch + * - replaced thread_info references by task_struct refs + * - removed task->pending_owner dependency + * - BKL drop/reacquire for semaphore style locks to avoid deadlocks + * in the scheduler return path as discussed with Steven Rostedt + * + * Copyright (C) 2006, Kihon Technologies Inc. + * Steven Rostedt <rostedt@goodmis.org> + * - debugged and patched Thomas Gleixner's rework. + * - added back the cmpxchg to the rework. + * - turned atomic require back on for SMP. + */ + +#include <linux/spinlock.h> +#include <linux/rtmutex.h> +#include <linux/sched.h> +#include <linux/delay.h> +#include <linux/module.h> +#include <linux/kallsyms.h> +#include <linux/syscalls.h> +#include <linux/interrupt.h> +#include <linux/plist.h> +#include <linux/fs.h> +#include <linux/futex.h> +#include <linux/hrtimer.h> +#include <linux/blkdev.h> + +#include "rtmutex_common.h" + +/* + * struct mutex functions + */ +void __mutex_do_init(struct mutex *mutex, const char *name, + struct lock_class_key *key) +{ +#ifdef CONFIG_DEBUG_LOCK_ALLOC + /* + * Make sure we are not reinitializing a held lock: + */ + debug_check_no_locks_freed((void *)mutex, sizeof(*mutex)); + lockdep_init_map(&mutex->dep_map, name, key, 0); +#endif + mutex->lock.save_state = 0; +} +EXPORT_SYMBOL(__mutex_do_init); + +static int _mutex_lock_blk_flush(struct mutex *lock, int state) +{ + /* + * Flush blk before ->pi_blocked_on is set. At schedule() time it is too + * late if one of the callbacks needs to acquire a sleeping lock. + */ + if (blk_needs_flush_plug(current)) + blk_schedule_flush_plug(current); + return __rt_mutex_lock_state(&lock->lock, state); +} + +void __lockfunc _mutex_lock(struct mutex *lock) +{ + mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_); + _mutex_lock_blk_flush(lock, TASK_UNINTERRUPTIBLE); +} +EXPORT_SYMBOL(_mutex_lock); + +void __lockfunc _mutex_lock_io_nested(struct mutex *lock, int subclass) +{ + int token; + + token = io_schedule_prepare(); + + mutex_acquire_nest(&lock->dep_map, subclass, 0, NULL, _RET_IP_); + __rt_mutex_lock_state(&lock->lock, TASK_UNINTERRUPTIBLE); + + io_schedule_finish(token); +} +EXPORT_SYMBOL_GPL(_mutex_lock_io_nested); + +int __lockfunc _mutex_lock_interruptible(struct mutex *lock) +{ + int ret; + + mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_); + ret = _mutex_lock_blk_flush(lock, TASK_INTERRUPTIBLE); + if (ret) + mutex_release(&lock->dep_map, _RET_IP_); + return ret; +} +EXPORT_SYMBOL(_mutex_lock_interruptible); + +int __lockfunc _mutex_lock_killable(struct mutex *lock) +{ + int ret; + + mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_); + ret = _mutex_lock_blk_flush(lock, TASK_KILLABLE); + if (ret) + mutex_release(&lock->dep_map, _RET_IP_); + return ret; +} +EXPORT_SYMBOL(_mutex_lock_killable); + +#ifdef CONFIG_DEBUG_LOCK_ALLOC +void __lockfunc _mutex_lock_nested(struct mutex *lock, int subclass) +{ + mutex_acquire_nest(&lock->dep_map, subclass, 0, NULL, _RET_IP_); + _mutex_lock_blk_flush(lock, TASK_UNINTERRUPTIBLE); +} +EXPORT_SYMBOL(_mutex_lock_nested); + +void __lockfunc _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) +{ + mutex_acquire_nest(&lock->dep_map, 0, 0, nest, _RET_IP_); + _mutex_lock_blk_flush(lock, TASK_UNINTERRUPTIBLE); +} +EXPORT_SYMBOL(_mutex_lock_nest_lock); + +int __lockfunc _mutex_lock_interruptible_nested(struct mutex *lock, int subclass) +{ + int ret; + + mutex_acquire_nest(&lock->dep_map, subclass, 0, NULL, _RET_IP_); + ret = _mutex_lock_blk_flush(lock, TASK_INTERRUPTIBLE); + if (ret) + mutex_release(&lock->dep_map, _RET_IP_); + return ret; +} +EXPORT_SYMBOL(_mutex_lock_interruptible_nested); + +int __lockfunc _mutex_lock_killable_nested(struct mutex *lock, int subclass) +{ + int ret; + + mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_); + ret = _mutex_lock_blk_flush(lock, TASK_KILLABLE); + if (ret) + mutex_release(&lock->dep_map, _RET_IP_); + return ret; +} +EXPORT_SYMBOL(_mutex_lock_killable_nested); +#endif + +int __lockfunc _mutex_trylock(struct mutex *lock) +{ + int ret = __rt_mutex_trylock(&lock->lock); + + if (ret) + mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); + + return ret; +} +EXPORT_SYMBOL(_mutex_trylock); + +void __lockfunc _mutex_unlock(struct mutex *lock) +{ + mutex_release(&lock->dep_map, _RET_IP_); + __rt_mutex_unlock(&lock->lock); +} +EXPORT_SYMBOL(_mutex_unlock); + +/** + * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 + * @cnt: the atomic which we are to dec + * @lock: the mutex to return holding if we dec to 0 + * + * return true and hold lock if we dec to 0, return false otherwise + */ +int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) +{ + /* dec if we can't possibly hit 0 */ + if (atomic_add_unless(cnt, -1, 1)) + return 0; + /* we might hit 0, so take the lock */ + mutex_lock(lock); + if (!atomic_dec_and_test(cnt)) { + /* when we actually did the dec, we didn't hit 0 */ + mutex_unlock(lock); + return 0; + } + /* we hit 0, and we hold the lock */ + return 1; +} +EXPORT_SYMBOL(atomic_dec_and_mutex_lock); @ kernel/locking/rtmutex-debug.c:35 @ #include "rtmutex_common.h" -static void printk_task(struct task_struct *p) -{ - if (p) - printk("%16s:%5d [%p, %3d]", p->comm, task_pid_nr(p), p, p->prio); - else - printk("<none>"); -} - -static void printk_lock(struct rt_mutex *lock, int print_owner) -{ - if (lock->name) - printk(" [%p] {%s}\n", - lock, lock->name); - else - printk(" [%p] {%s:%d}\n", - lock, lock->file, lock->line); - - if (print_owner && rt_mutex_owner(lock)) { - printk(".. ->owner: %p\n", lock->owner); - printk(".. held by: "); - printk_task(rt_mutex_owner(lock)); - printk("\n"); - } -} - void rt_mutex_debug_task_free(struct task_struct *task) { DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root)); DEBUG_LOCKS_WARN_ON(task->pi_blocked_on); } -/* - * We fill out the fields in the waiter to store the information about - * the deadlock. We print when we return. act_waiter can be NULL in - * case of a remove waiter operation. - */ -void debug_rt_mutex_deadlock(enum rtmutex_chainwalk chwalk, - struct rt_mutex_waiter *act_waiter, - struct rt_mutex *lock) -{ - struct task_struct *task; - - if (!debug_locks || chwalk == RT_MUTEX_FULL_CHAINWALK || !act_waiter) - return; - - task = rt_mutex_owner(act_waiter->lock); - if (task && task != current) { - act_waiter->deadlock_task_pid = get_pid(task_pid(task)); - act_waiter->deadlock_lock = lock; - } -} - -void debug_rt_mutex_print_deadlock(struct rt_mutex_waiter *waiter) -{ - struct task_struct *task; - - if (!waiter->deadlock_lock || !debug_locks) - return; - - rcu_read_lock(); - task = pid_task(waiter->deadlock_task_pid, PIDTYPE_PID); - if (!task) { - rcu_read_unlock(); - return; - } - - if (!debug_locks_off()) { - rcu_read_unlock(); - return; - } - - pr_warn("\n"); - pr_warn("============================================\n"); - pr_warn("WARNING: circular locking deadlock detected!\n"); - pr_warn("%s\n", print_tainted()); - pr_warn("--------------------------------------------\n"); - printk("%s/%d is deadlocking current task %s/%d\n\n", - task->comm, task_pid_nr(task), - current->comm, task_pid_nr(current)); - - printk("\n1) %s/%d is trying to acquire this lock:\n", - current->comm, task_pid_nr(current)); - printk_lock(waiter->lock, 1); - - printk("\n2) %s/%d is blocked on this lock:\n", - task->comm, task_pid_nr(task)); - printk_lock(waiter->deadlock_lock, 1); - - debug_show_held_locks(current); - debug_show_held_locks(task); - - printk("\n%s/%d's [blocked] stackdump:\n\n", - task->comm, task_pid_nr(task)); - show_stack(task, NULL, KERN_DEFAULT); - printk("\n%s/%d's [current] stackdump:\n\n", - current->comm, task_pid_nr(current)); - dump_stack(); - debug_show_all_locks(); - rcu_read_unlock(); - - printk("[ turning off deadlock detection." - "Please report this trace. ]\n\n"); -} - void debug_rt_mutex_lock(struct rt_mutex *lock) { } @ kernel/locking/rtmutex-debug.c:63 @ void debug_rt_mutex_proxy_unlock(struct rt_mutex *lock) void debug_rt_mutex_init_waiter(struct rt_mutex_waiter *waiter) { memset(waiter, 0x11, sizeof(*waiter)); - waiter->deadlock_task_pid = NULL; } void debug_rt_mutex_free_waiter(struct rt_mutex_waiter *waiter) { - put_pid(waiter->deadlock_task_pid); memset(waiter, 0x22, sizeof(*waiter)); } @ kernel/locking/rtmutex-debug.c:76 @ void debug_rt_mutex_init(struct rt_mutex *lock, const char *name, struct lock_cl * Make sure we are not reinitializing a held lock: */ debug_check_no_locks_freed((void *)lock, sizeof(*lock)); - lock->name = name; #ifdef CONFIG_DEBUG_LOCK_ALLOC lockdep_init_map(&lock->dep_map, name, key, 0); #endif } - @ kernel/locking/rtmutex-debug.h:21 @ extern void debug_rt_mutex_unlock(struct rt_mutex *lock); extern void debug_rt_mutex_proxy_lock(struct rt_mutex *lock, struct task_struct *powner); extern void debug_rt_mutex_proxy_unlock(struct rt_mutex *lock); -extern void debug_rt_mutex_deadlock(enum rtmutex_chainwalk chwalk, - struct rt_mutex_waiter *waiter, - struct rt_mutex *lock); -extern void debug_rt_mutex_print_deadlock(struct rt_mutex_waiter *waiter); -# define debug_rt_mutex_reset_waiter(w) \ - do { (w)->deadlock_lock = NULL; } while (0) static inline bool debug_rt_mutex_detect_deadlock(struct rt_mutex_waiter *waiter, enum rtmutex_chainwalk walk) { return (waiter != NULL); } - -static inline void rt_mutex_print_deadlock(struct rt_mutex_waiter *w) -{ - debug_rt_mutex_print_deadlock(w); -} @ kernel/locking/rtmutex.c:11 @ * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt * Copyright (C) 2006 Esben Nielsen + * Adaptive Spinlocks: + * Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich, + * and Peter Morreale, + * Adaptive Spinlocks simplification: + * Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com> * * See Documentation/locking/rt-mutex-design.rst for details. */ @ kernel/locking/rtmutex.c:27 @ #include <linux/sched/wake_q.h> #include <linux/sched/debug.h> #include <linux/timer.h> +#include <linux/ww_mutex.h> #include "rtmutex_common.h" @ kernel/locking/rtmutex.c:145 @ static void fixup_rt_mutex_waiters(struct rt_mutex *lock) WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS); } +static int rt_mutex_real_waiter(struct rt_mutex_waiter *waiter) +{ + return waiter && waiter != PI_WAKEUP_INPROGRESS && + waiter != PI_REQUEUE_INPROGRESS; +} + /* * We can speed up the acquire/release, if there's no debugging state to be * set up. @ kernel/locking/rtmutex.c:242 @ static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock, * Only use with rt_mutex_waiter_{less,equal}() */ #define task_to_waiter(p) \ - &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline } + &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline, .task = (p) } static inline int rt_mutex_waiter_less(struct rt_mutex_waiter *left, @ kernel/locking/rtmutex.c:282 @ rt_mutex_waiter_equal(struct rt_mutex_waiter *left, return 1; } +#define STEAL_NORMAL 0 +#define STEAL_LATERAL 1 + +static inline int +rt_mutex_steal(struct rt_mutex *lock, struct rt_mutex_waiter *waiter, int mode) +{ + struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock); + + if (waiter == top_waiter || rt_mutex_waiter_less(waiter, top_waiter)) + return 1; + + /* + * Note that RT tasks are excluded from lateral-steals + * to prevent the introduction of an unbounded latency. + */ + if (mode == STEAL_NORMAL || rt_task(waiter->task)) + return 0; + + return rt_mutex_waiter_equal(waiter, top_waiter); +} + static void rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) { @ kernel/locking/rtmutex.c:407 @ static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter, return debug_rt_mutex_detect_deadlock(waiter, chwalk); } +static void rt_mutex_wake_waiter(struct rt_mutex_waiter *waiter) +{ + if (waiter->savestate) + wake_up_lock_sleeper(waiter->task); + else + wake_up_process(waiter->task); +} + /* * Max number of times we'll walk the boosting chain: */ @ kernel/locking/rtmutex.c:422 @ int max_lock_depth = 1024; static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p) { - return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL; + return rt_mutex_real_waiter(p->pi_blocked_on) ? + p->pi_blocked_on->lock : NULL; } /* @ kernel/locking/rtmutex.c:559 @ static int rt_mutex_adjust_prio_chain(struct task_struct *task, * reached or the state of the chain has changed while we * dropped the locks. */ - if (!waiter) + if (!rt_mutex_real_waiter(waiter)) goto out_unlock_pi; /* @ kernel/locking/rtmutex.c:642 @ static int rt_mutex_adjust_prio_chain(struct task_struct *task, * walk, we detected a deadlock. */ if (lock == orig_lock || rt_mutex_owner(lock) == top_task) { - debug_rt_mutex_deadlock(chwalk, orig_waiter, lock); raw_spin_unlock(&lock->wait_lock); ret = -EDEADLK; goto out_unlock_pi; @ kernel/locking/rtmutex.c:738 @ static int rt_mutex_adjust_prio_chain(struct task_struct *task, * follow here. This is the end of the chain we are walking. */ if (!rt_mutex_owner(lock)) { + struct rt_mutex_waiter *lock_top_waiter; + /* * If the requeue [7] above changed the top waiter, * then we need to wake the new top waiter up to try * to get the lock. */ - if (prerequeue_top_waiter != rt_mutex_top_waiter(lock)) - wake_up_process(rt_mutex_top_waiter(lock)->task); + lock_top_waiter = rt_mutex_top_waiter(lock); + if (prerequeue_top_waiter != lock_top_waiter) + rt_mutex_wake_waiter(lock_top_waiter); raw_spin_unlock_irq(&lock->wait_lock); return 0; } @ kernel/locking/rtmutex.c:848 @ static int rt_mutex_adjust_prio_chain(struct task_struct *task, * @task: The task which wants to acquire the lock * @waiter: The waiter that is queued to the lock's wait tree if the * callsite called task_blocked_on_lock(), otherwise NULL + * @mode: Lock steal mode (STEAL_NORMAL, STEAL_LATERAL) */ -static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, - struct rt_mutex_waiter *waiter) +static int __try_to_take_rt_mutex(struct rt_mutex *lock, + struct task_struct *task, + struct rt_mutex_waiter *waiter, int mode) { lockdep_assert_held(&lock->wait_lock); @ kernel/locking/rtmutex.c:888 @ static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, */ if (waiter) { /* - * If waiter is not the highest priority waiter of - * @lock, give up. + * If waiter is not the highest priority waiter of @lock, + * or its peer when lateral steal is allowed, give up. */ - if (waiter != rt_mutex_top_waiter(lock)) + if (!rt_mutex_steal(lock, waiter, mode)) return 0; - /* * We can acquire the lock. Remove the waiter from the * lock waiters tree. @ kernel/locking/rtmutex.c:910 @ static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, */ if (rt_mutex_has_waiters(lock)) { /* - * If @task->prio is greater than or equal to - * the top waiter priority (kernel view), - * @task lost. + * If @task->prio is greater than the top waiter + * priority (kernel view), or equal to it when a + * lateral steal is forbidden, @task lost. */ - if (!rt_mutex_waiter_less(task_to_waiter(task), - rt_mutex_top_waiter(lock))) + if (!rt_mutex_steal(lock, task_to_waiter(task), mode)) return 0; - /* * The current top waiter stays enqueued. We * don't have to change anything in the lock @ kernel/locking/rtmutex.c:962 @ static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, return 1; } +#ifdef CONFIG_PREEMPT_RT +/* + * preemptible spin_lock functions: + */ +static inline void rt_spin_lock_fastlock(struct rt_mutex *lock, + void (*slowfn)(struct rt_mutex *lock)) +{ + might_sleep_no_state_check(); + + if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) + return; + else + slowfn(lock); +} + +static inline void rt_spin_lock_fastunlock(struct rt_mutex *lock, + void (*slowfn)(struct rt_mutex *lock)) +{ + if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) + return; + else + slowfn(lock); +} +#ifdef CONFIG_SMP +/* + * Note that owner is a speculative pointer and dereferencing relies + * on rcu_read_lock() and the check against the lock owner. + */ +static int adaptive_wait(struct rt_mutex *lock, + struct task_struct *owner) +{ + int res = 0; + + rcu_read_lock(); + for (;;) { + if (owner != rt_mutex_owner(lock)) + break; + /* + * Ensure that owner->on_cpu is dereferenced _after_ + * checking the above to be valid. + */ + barrier(); + if (!owner->on_cpu) { + res = 1; + break; + } + cpu_relax(); + } + rcu_read_unlock(); + return res; +} +#else +static int adaptive_wait(struct rt_mutex *lock, + struct task_struct *orig_owner) +{ + return 1; +} +#endif + +static int task_blocks_on_rt_mutex(struct rt_mutex *lock, + struct rt_mutex_waiter *waiter, + struct task_struct *task, + enum rtmutex_chainwalk chwalk); +/* + * Slow path lock function spin_lock style: this variant is very + * careful not to miss any non-lock wakeups. + * + * We store the current state under p->pi_lock in p->saved_state and + * the try_to_wake_up() code handles this accordingly. + */ +void __sched rt_spin_lock_slowlock_locked(struct rt_mutex *lock, + struct rt_mutex_waiter *waiter, + unsigned long flags) +{ + struct task_struct *lock_owner, *self = current; + struct rt_mutex_waiter *top_waiter; + int ret; + + if (__try_to_take_rt_mutex(lock, self, NULL, STEAL_LATERAL)) + return; + + BUG_ON(rt_mutex_owner(lock) == self); + + /* + * We save whatever state the task is in and we'll restore it + * after acquiring the lock taking real wakeups into account + * as well. We are serialized via pi_lock against wakeups. See + * try_to_wake_up(). + */ + raw_spin_lock(&self->pi_lock); + self->saved_state = self->state; + __set_current_state_no_track(TASK_UNINTERRUPTIBLE); + raw_spin_unlock(&self->pi_lock); + + ret = task_blocks_on_rt_mutex(lock, waiter, self, RT_MUTEX_MIN_CHAINWALK); + BUG_ON(ret); + + for (;;) { + /* Try to acquire the lock again. */ + if (__try_to_take_rt_mutex(lock, self, waiter, STEAL_LATERAL)) + break; + + top_waiter = rt_mutex_top_waiter(lock); + lock_owner = rt_mutex_owner(lock); + + raw_spin_unlock_irqrestore(&lock->wait_lock, flags); + + if (top_waiter != waiter || adaptive_wait(lock, lock_owner)) + preempt_schedule_lock(); + + raw_spin_lock_irqsave(&lock->wait_lock, flags); + + raw_spin_lock(&self->pi_lock); + __set_current_state_no_track(TASK_UNINTERRUPTIBLE); + raw_spin_unlock(&self->pi_lock); + } + + /* + * Restore the task state to current->saved_state. We set it + * to the original state above and the try_to_wake_up() code + * has possibly updated it when a real (non-rtmutex) wakeup + * happened while we were blocked. Clear saved_state so + * try_to_wakeup() does not get confused. + */ + raw_spin_lock(&self->pi_lock); + __set_current_state_no_track(self->saved_state); + self->saved_state = TASK_RUNNING; + raw_spin_unlock(&self->pi_lock); + + /* + * try_to_take_rt_mutex() sets the waiter bit + * unconditionally. We might have to fix that up: + */ + fixup_rt_mutex_waiters(lock); + + BUG_ON(rt_mutex_has_waiters(lock) && waiter == rt_mutex_top_waiter(lock)); + BUG_ON(!RB_EMPTY_NODE(&waiter->tree_entry)); +} + +static void noinline __sched rt_spin_lock_slowlock(struct rt_mutex *lock) +{ + struct rt_mutex_waiter waiter; + unsigned long flags; + + rt_mutex_init_waiter(&waiter, true); + + raw_spin_lock_irqsave(&lock->wait_lock, flags); + rt_spin_lock_slowlock_locked(lock, &waiter, flags); + raw_spin_unlock_irqrestore(&lock->wait_lock, flags); + debug_rt_mutex_free_waiter(&waiter); +} + +static bool __sched __rt_mutex_unlock_common(struct rt_mutex *lock, + struct wake_q_head *wake_q, + struct wake_q_head *wq_sleeper); +/* + * Slow path to release a rt_mutex spin_lock style + */ +void __sched rt_spin_lock_slowunlock(struct rt_mutex *lock) +{ + unsigned long flags; + DEFINE_WAKE_Q(wake_q); + DEFINE_WAKE_Q(wake_sleeper_q); + bool postunlock; + + raw_spin_lock_irqsave(&lock->wait_lock, flags); + postunlock = __rt_mutex_unlock_common(lock, &wake_q, &wake_sleeper_q); + raw_spin_unlock_irqrestore(&lock->wait_lock, flags); + + if (postunlock) + rt_mutex_postunlock(&wake_q, &wake_sleeper_q); +} + +void __lockfunc rt_spin_lock(spinlock_t *lock) +{ + spin_acquire(&lock->dep_map, 0, 0, _RET_IP_); + rt_spin_lock_fastlock(&lock->lock, rt_spin_lock_slowlock); + rcu_read_lock(); + migrate_disable(); +} +EXPORT_SYMBOL(rt_spin_lock); + +void __lockfunc __rt_spin_lock(struct rt_mutex *lock) +{ + rt_spin_lock_fastlock(lock, rt_spin_lock_slowlock); +} + +#ifdef CONFIG_DEBUG_LOCK_ALLOC +void __lockfunc rt_spin_lock_nested(spinlock_t *lock, int subclass) +{ + spin_acquire(&lock->dep_map, subclass, 0, _RET_IP_); + rt_spin_lock_fastlock(&lock->lock, rt_spin_lock_slowlock); + rcu_read_lock(); + migrate_disable(); +} +EXPORT_SYMBOL(rt_spin_lock_nested); + +void __lockfunc rt_spin_lock_nest_lock(spinlock_t *lock, + struct lockdep_map *nest_lock) +{ + spin_acquire_nest(&lock->dep_map, 0, 0, nest_lock, _RET_IP_); + rt_spin_lock_fastlock(&lock->lock, rt_spin_lock_slowlock); + rcu_read_lock(); + migrate_disable(); +} +EXPORT_SYMBOL(rt_spin_lock_nest_lock); +#endif + +void __lockfunc rt_spin_unlock(spinlock_t *lock) +{ + /* NOTE: we always pass in '1' for nested, for simplicity */ + spin_release(&lock->dep_map, _RET_IP_); + migrate_enable(); + rcu_read_unlock(); + rt_spin_lock_fastunlock(&lock->lock, rt_spin_lock_slowunlock); +} +EXPORT_SYMBOL(rt_spin_unlock); + +void __lockfunc __rt_spin_unlock(struct rt_mutex *lock) +{ + rt_spin_lock_fastunlock(lock, rt_spin_lock_slowunlock); +} +EXPORT_SYMBOL(__rt_spin_unlock); + +/* + * Wait for the lock to get unlocked: instead of polling for an unlock + * (like raw spinlocks do), we lock and unlock, to force the kernel to + * schedule if there's contention: + */ +void __lockfunc rt_spin_lock_unlock(spinlock_t *lock) +{ + spin_lock(lock); + spin_unlock(lock); +} +EXPORT_SYMBOL(rt_spin_lock_unlock); + +int __lockfunc rt_spin_trylock(spinlock_t *lock) +{ + int ret; + + ret = __rt_mutex_trylock(&lock->lock); + if (ret) { + spin_acquire(&lock->dep_map, 0, 1, _RET_IP_); + rcu_read_lock(); + migrate_disable(); + } + return ret; +} +EXPORT_SYMBOL(rt_spin_trylock); + +int __lockfunc rt_spin_trylock_bh(spinlock_t *lock) +{ + int ret; + + local_bh_disable(); + ret = __rt_mutex_trylock(&lock->lock); + if (ret) { + spin_acquire(&lock->dep_map, 0, 1, _RET_IP_); + rcu_read_lock(); + migrate_disable(); + } else { + local_bh_enable(); + } + return ret; +} +EXPORT_SYMBOL(rt_spin_trylock_bh); + +void +__rt_spin_lock_init(spinlock_t *lock, const char *name, struct lock_class_key *key) +{ +#ifdef CONFIG_DEBUG_LOCK_ALLOC + /* + * Make sure we are not reinitializing a held lock: + */ + debug_check_no_locks_freed((void *)lock, sizeof(*lock)); + lockdep_init_map(&lock->dep_map, name, key, 0); +#endif +} +EXPORT_SYMBOL(__rt_spin_lock_init); + +#endif /* PREEMPT_RT */ + +#ifdef CONFIG_PREEMPT_RT + static inline int __sched +__mutex_lock_check_stamp(struct rt_mutex *lock, struct ww_acquire_ctx *ctx) +{ + struct ww_mutex *ww = container_of(lock, struct ww_mutex, base.lock); + struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx); + + if (!hold_ctx) + return 0; + + if (unlikely(ctx == hold_ctx)) + return -EALREADY; + + if (ctx->stamp - hold_ctx->stamp <= LONG_MAX && + (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) { +#ifdef CONFIG_DEBUG_MUTEXES + DEBUG_LOCKS_WARN_ON(ctx->contending_lock); + ctx->contending_lock = ww; +#endif + return -EDEADLK; + } + + return 0; +} +#else + static inline int __sched +__mutex_lock_check_stamp(struct rt_mutex *lock, struct ww_acquire_ctx *ctx) +{ + BUG(); + return 0; +} + +#endif + +static inline int +try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, + struct rt_mutex_waiter *waiter) +{ + return __try_to_take_rt_mutex(lock, task, waiter, STEAL_NORMAL); +} + /* * Task blocks on lock. * @ kernel/locking/rtmutex.c:1317 @ static int task_blocks_on_rt_mutex(struct rt_mutex *lock, return -EDEADLK; raw_spin_lock(&task->pi_lock); + /* + * In the case of futex requeue PI, this will be a proxy + * lock. The task will wake unaware that it is enqueueed on + * this lock. Avoid blocking on two locks and corrupting + * pi_blocked_on via the PI_WAKEUP_INPROGRESS + * flag. futex_wait_requeue_pi() sets this when it wakes up + * before requeue (due to a signal or timeout). Do not enqueue + * the task if PI_WAKEUP_INPROGRESS is set. + */ + if (task != current && task->pi_blocked_on == PI_WAKEUP_INPROGRESS) { + raw_spin_unlock(&task->pi_lock); + return -EAGAIN; + } + + BUG_ON(rt_mutex_real_waiter(task->pi_blocked_on)); + waiter->task = task; waiter->lock = lock; waiter->prio = task->prio; @ kernel/locking/rtmutex.c:1356 @ static int task_blocks_on_rt_mutex(struct rt_mutex *lock, rt_mutex_enqueue_pi(owner, waiter); rt_mutex_adjust_prio(owner); - if (owner->pi_blocked_on) + if (rt_mutex_real_waiter(owner->pi_blocked_on)) chain_walk = 1; } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) { chain_walk = 1; @ kernel/locking/rtmutex.c:1398 @ static int task_blocks_on_rt_mutex(struct rt_mutex *lock, * Called with lock->wait_lock held and interrupts disabled. */ static void mark_wakeup_next_waiter(struct wake_q_head *wake_q, + struct wake_q_head *wake_sleeper_q, struct rt_mutex *lock) { struct rt_mutex_waiter *waiter; @ kernel/locking/rtmutex.c:1438 @ static void mark_wakeup_next_waiter(struct wake_q_head *wake_q, * Pairs with preempt_enable() in rt_mutex_postunlock(); */ preempt_disable(); - wake_q_add(wake_q, waiter->task); + if (waiter->savestate) + wake_q_add_sleeper(wake_sleeper_q, waiter->task); + else + wake_q_add(wake_q, waiter->task); raw_spin_unlock(¤t->pi_lock); } @ kernel/locking/rtmutex.c:1456 @ static void remove_waiter(struct rt_mutex *lock, { bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock)); struct task_struct *owner = rt_mutex_owner(lock); - struct rt_mutex *next_lock; + struct rt_mutex *next_lock = NULL; lockdep_assert_held(&lock->wait_lock); @ kernel/locking/rtmutex.c:1482 @ static void remove_waiter(struct rt_mutex *lock, rt_mutex_adjust_prio(owner); /* Store the lock on which owner is blocked or NULL */ - next_lock = task_blocked_on_lock(owner); + if (rt_mutex_real_waiter(owner->pi_blocked_on)) + next_lock = task_blocked_on_lock(owner); raw_spin_unlock(&owner->pi_lock); @ kernel/locking/rtmutex.c:1519 @ void rt_mutex_adjust_pi(struct task_struct *task) raw_spin_lock_irqsave(&task->pi_lock, flags); waiter = task->pi_blocked_on; - if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) { + if (!rt_mutex_real_waiter(waiter) || + rt_mutex_waiter_equal(waiter, task_to_waiter(task))) { raw_spin_unlock_irqrestore(&task->pi_lock, flags); return; } next_lock = waiter->lock; - raw_spin_unlock_irqrestore(&task->pi_lock, flags); /* gets dropped in rt_mutex_adjust_prio_chain()! */ get_task_struct(task); + raw_spin_unlock_irqrestore(&task->pi_lock, flags); rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL, next_lock, NULL, task); } -void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter) +void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter, bool savestate) { debug_rt_mutex_init_waiter(waiter); RB_CLEAR_NODE(&waiter->pi_tree_entry); RB_CLEAR_NODE(&waiter->tree_entry); waiter->task = NULL; + waiter->savestate = savestate; } /** @ kernel/locking/rtmutex.c:1556 @ void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter) static int __sched __rt_mutex_slowlock(struct rt_mutex *lock, int state, struct hrtimer_sleeper *timeout, - struct rt_mutex_waiter *waiter) + struct rt_mutex_waiter *waiter, + struct ww_acquire_ctx *ww_ctx) { int ret = 0; @ kernel/locking/rtmutex.c:1566 @ __rt_mutex_slowlock(struct rt_mutex *lock, int state, if (try_to_take_rt_mutex(lock, current, waiter)) break; - /* - * TASK_INTERRUPTIBLE checks for signals and - * timeout. Ignored otherwise. - */ - if (likely(state == TASK_INTERRUPTIBLE)) { - /* Signal pending? */ - if (signal_pending(current)) - ret = -EINTR; - if (timeout && !timeout->task) - ret = -ETIMEDOUT; + if (timeout && !timeout->task) { + ret = -ETIMEDOUT; + break; + } + if (signal_pending_state(state, current)) { + ret = -EINTR; + break; + } + + if (ww_ctx && ww_ctx->acquired > 0) { + ret = __mutex_lock_check_stamp(lock, ww_ctx); if (ret) break; } raw_spin_unlock_irq(&lock->wait_lock); - debug_rt_mutex_print_deadlock(waiter); - schedule(); raw_spin_lock_irq(&lock->wait_lock); @ kernel/locking/rtmutex.c:1603 @ static void rt_mutex_handle_deadlock(int res, int detect_deadlock, if (res != -EDEADLOCK || detect_deadlock) return; - /* - * Yell lowdly and stop the task right here. - */ - rt_mutex_print_deadlock(w); while (1) { set_current_state(TASK_INTERRUPTIBLE); schedule(); } } -/* - * Slow path lock function: - */ -static int __sched -rt_mutex_slowlock(struct rt_mutex *lock, int state, - struct hrtimer_sleeper *timeout, - enum rtmutex_chainwalk chwalk) +static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww, + struct ww_acquire_ctx *ww_ctx) { - struct rt_mutex_waiter waiter; - unsigned long flags; - int ret = 0; +#ifdef CONFIG_DEBUG_MUTEXES + /* + * If this WARN_ON triggers, you used ww_mutex_lock to acquire, + * but released with a normal mutex_unlock in this call. + * + * This should never happen, always use ww_mutex_unlock. + */ + DEBUG_LOCKS_WARN_ON(ww->ctx); + + /* + * Not quite done after calling ww_acquire_done() ? + */ + DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); - rt_mutex_init_waiter(&waiter); + if (ww_ctx->contending_lock) { + /* + * After -EDEADLK you tried to + * acquire a different ww_mutex? Bad! + */ + DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); + + /* + * You called ww_mutex_lock after receiving -EDEADLK, + * but 'forgot' to unlock everything else first? + */ + DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); + ww_ctx->contending_lock = NULL; + } /* - * Technically we could use raw_spin_[un]lock_irq() here, but this can - * be called in early boot if the cmpxchg() fast path is disabled - * (debug, no architecture support). In this case we will acquire the - * rtmutex with lock->wait_lock held. But we cannot unconditionally - * enable interrupts in that early boot case. So we need to use the - * irqsave/restore variants. + * Naughty, using a different class will lead to undefined behavior! */ - raw_spin_lock_irqsave(&lock->wait_lock, flags); + DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); +#endif + ww_ctx->acquired++; +} + +#ifdef CONFIG_PREEMPT_RT +static void ww_mutex_account_lock(struct rt_mutex *lock, + struct ww_acquire_ctx *ww_ctx) +{ + struct ww_mutex *ww = container_of(lock, struct ww_mutex, base.lock); + struct rt_mutex_waiter *waiter, *n; + + /* + * This branch gets optimized out for the common case, + * and is only important for ww_mutex_lock. + */ + ww_mutex_lock_acquired(ww, ww_ctx); + ww->ctx = ww_ctx; + + /* + * Give any possible sleeping processes the chance to wake up, + * so they can recheck if they have to back off. + */ + rbtree_postorder_for_each_entry_safe(waiter, n, &lock->waiters.rb_root, + tree_entry) { + /* XXX debug rt mutex waiter wakeup */ + + BUG_ON(waiter->lock != lock); + rt_mutex_wake_waiter(waiter); + } +} + +#else + +static void ww_mutex_account_lock(struct rt_mutex *lock, + struct ww_acquire_ctx *ww_ctx) +{ + BUG(); +} +#endif + +int __sched rt_mutex_slowlock_locked(struct rt_mutex *lock, int state, + struct hrtimer_sleeper *timeout, + enum rtmutex_chainwalk chwalk, + struct ww_acquire_ctx *ww_ctx, + struct rt_mutex_waiter *waiter) +{ + int ret; + +#ifdef CONFIG_PREEMPT_RT + if (ww_ctx) { + struct ww_mutex *ww; + + ww = container_of(lock, struct ww_mutex, base.lock); + if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) + return -EALREADY; + } +#endif /* Try to acquire the lock again: */ if (try_to_take_rt_mutex(lock, current, NULL)) { - raw_spin_unlock_irqrestore(&lock->wait_lock, flags); + if (ww_ctx) + ww_mutex_account_lock(lock, ww_ctx); return 0; } @ kernel/locking/rtmutex.c:1716 @ rt_mutex_slowlock(struct rt_mutex *lock, int state, if (unlikely(timeout)) hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); - ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk); + ret = task_blocks_on_rt_mutex(lock, waiter, current, chwalk); - if (likely(!ret)) + if (likely(!ret)) { /* sleep on the mutex */ - ret = __rt_mutex_slowlock(lock, state, timeout, &waiter); + ret = __rt_mutex_slowlock(lock, state, timeout, waiter, + ww_ctx); + } else if (ww_ctx) { + /* ww_mutex received EDEADLK, let it become EALREADY */ + ret = __mutex_lock_check_stamp(lock, ww_ctx); + BUG_ON(!ret); + } if (unlikely(ret)) { __set_current_state(TASK_RUNNING); - remove_waiter(lock, &waiter); - rt_mutex_handle_deadlock(ret, chwalk, &waiter); + remove_waiter(lock, waiter); + /* ww_mutex wants to report EDEADLK/EALREADY, let it */ + if (!ww_ctx) + rt_mutex_handle_deadlock(ret, chwalk, waiter); + } else if (ww_ctx) { + ww_mutex_account_lock(lock, ww_ctx); } /* @ kernel/locking/rtmutex.c:1743 @ rt_mutex_slowlock(struct rt_mutex *lock, int state, * unconditionally. We might have to fix that up. */ fixup_rt_mutex_waiters(lock); + return ret; +} + +/* + * Slow path lock function: + */ +static int __sched +rt_mutex_slowlock(struct rt_mutex *lock, int state, + struct hrtimer_sleeper *timeout, + enum rtmutex_chainwalk chwalk, + struct ww_acquire_ctx *ww_ctx) +{ + struct rt_mutex_waiter waiter; + unsigned long flags; + int ret = 0; + + rt_mutex_init_waiter(&waiter, false); + + /* + * Technically we could use raw_spin_[un]lock_irq() here, but this can + * be called in early boot if the cmpxchg() fast path is disabled + * (debug, no architecture support). In this case we will acquire the + * rtmutex with lock->wait_lock held. But we cannot unconditionally + * enable interrupts in that early boot case. So we need to use the + * irqsave/restore variants. + */ + raw_spin_lock_irqsave(&lock->wait_lock, flags); + + ret = rt_mutex_slowlock_locked(lock, state, timeout, chwalk, ww_ctx, + &waiter); raw_spin_unlock_irqrestore(&lock->wait_lock, flags); @ kernel/locking/rtmutex.c:1833 @ static inline int rt_mutex_slowtrylock(struct rt_mutex *lock) * Return whether the current task needs to call rt_mutex_postunlock(). */ static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock, - struct wake_q_head *wake_q) + struct wake_q_head *wake_q, + struct wake_q_head *wake_sleeper_q) { unsigned long flags; @ kernel/locking/rtmutex.c:1888 @ static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock, * * Queue the next waiter for wakeup once we release the wait_lock. */ - mark_wakeup_next_waiter(wake_q, lock); + mark_wakeup_next_waiter(wake_q, wake_sleeper_q, lock); raw_spin_unlock_irqrestore(&lock->wait_lock, flags); return true; /* call rt_mutex_postunlock() */ @ kernel/locking/rtmutex.c:1902 @ static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock, */ static inline int rt_mutex_fastlock(struct rt_mutex *lock, int state, + struct ww_acquire_ctx *ww_ctx, int (*slowfn)(struct rt_mutex *lock, int state, struct hrtimer_sleeper *timeout, - enum rtmutex_chainwalk chwalk)) + enum rtmutex_chainwalk chwalk, + struct ww_acquire_ctx *ww_ctx)) { if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) return 0; - return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK); -} - -static inline int -rt_mutex_timed_fastlock(struct rt_mutex *lock, int state, - struct hrtimer_sleeper *timeout, - enum rtmutex_chainwalk chwalk, - int (*slowfn)(struct rt_mutex *lock, int state, - struct hrtimer_sleeper *timeout, - enum rtmutex_chainwalk chwalk)) -{ - if (chwalk == RT_MUTEX_MIN_CHAINWALK && - likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) - return 0; - - return slowfn(lock, state, timeout, chwalk); + return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK, ww_ctx); } static inline int @ kernel/locking/rtmutex.c:1927 @ rt_mutex_fasttrylock(struct rt_mutex *lock, /* * Performs the wakeup of the the top-waiter and re-enables preemption. */ -void rt_mutex_postunlock(struct wake_q_head *wake_q) +void rt_mutex_postunlock(struct wake_q_head *wake_q, + struct wake_q_head *wake_sleeper_q) { wake_up_q(wake_q); + wake_up_q_sleeper(wake_sleeper_q); /* Pairs with preempt_disable() in rt_mutex_slowunlock() */ preempt_enable(); @ kernel/locking/rtmutex.c:1940 @ void rt_mutex_postunlock(struct wake_q_head *wake_q) static inline void rt_mutex_fastunlock(struct rt_mutex *lock, bool (*slowfn)(struct rt_mutex *lock, - struct wake_q_head *wqh)) + struct wake_q_head *wqh, + struct wake_q_head *wq_sleeper)) { DEFINE_WAKE_Q(wake_q); + DEFINE_WAKE_Q(wake_sleeper_q); if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) return; - if (slowfn(lock, &wake_q)) - rt_mutex_postunlock(&wake_q); + if (slowfn(lock, &wake_q, &wake_sleeper_q)) + rt_mutex_postunlock(&wake_q, &wake_sleeper_q); } -static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass) +int __sched __rt_mutex_lock_state(struct rt_mutex *lock, int state) { might_sleep(); + return rt_mutex_fastlock(lock, state, NULL, rt_mutex_slowlock); +} + +/** + * rt_mutex_lock_state - lock a rt_mutex with a given state + * + * @lock: The rt_mutex to be locked + * @state: The state to set when blocking on the rt_mutex + */ +static inline int __sched rt_mutex_lock_state(struct rt_mutex *lock, + unsigned int subclass, int state) +{ + int ret; mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_); - rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock); + ret = __rt_mutex_lock_state(lock, state); + if (ret) + mutex_release(&lock->dep_map, _RET_IP_); + return ret; +} + +static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass) +{ + rt_mutex_lock_state(lock, subclass, TASK_UNINTERRUPTIBLE); } #ifdef CONFIG_DEBUG_LOCK_ALLOC @ kernel/locking/rtmutex.c:2020 @ EXPORT_SYMBOL_GPL(rt_mutex_lock); */ int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock) { - int ret; - - might_sleep(); - - mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_); - ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock); - if (ret) - mutex_release(&lock->dep_map, _RET_IP_); - - return ret; + return rt_mutex_lock_state(lock, 0, TASK_INTERRUPTIBLE); } EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); @ kernel/locking/rtmutex.c:2037 @ int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock) return __rt_mutex_slowtrylock(lock); } -/** - * rt_mutex_timed_lock - lock a rt_mutex interruptible - * the timeout structure is provided - * by the caller - * - * @lock: the rt_mutex to be locked - * @timeout: timeout structure or NULL (no timeout) - * - * Returns: - * 0 on success - * -EINTR when interrupted by a signal - * -ETIMEDOUT when the timeout expired - */ -int -rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout) +int __sched __rt_mutex_trylock(struct rt_mutex *lock) { - int ret; - - might_sleep(); - - mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_); - ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout, - RT_MUTEX_MIN_CHAINWALK, - rt_mutex_slowlock); - if (ret) - mutex_release(&lock->dep_map, _RET_IP_); +#ifdef CONFIG_PREEMPT_RT + if (WARN_ON_ONCE(in_irq() || in_nmi())) +#else + if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq())) +#endif + return 0; - return ret; + return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock); } -EXPORT_SYMBOL_GPL(rt_mutex_timed_lock); /** * rt_mutex_trylock - try to lock a rt_mutex @ kernel/locking/rtmutex.c:2064 @ int __sched rt_mutex_trylock(struct rt_mutex *lock) { int ret; - if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq())) - return 0; - - ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock); + ret = __rt_mutex_trylock(lock); if (ret) mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); @ kernel/locking/rtmutex.c:2072 @ int __sched rt_mutex_trylock(struct rt_mutex *lock) } EXPORT_SYMBOL_GPL(rt_mutex_trylock); +void __sched __rt_mutex_unlock(struct rt_mutex *lock) +{ + rt_mutex_fastunlock(lock, rt_mutex_slowunlock); +} + /** * rt_mutex_unlock - unlock a rt_mutex * @ kernel/locking/rtmutex.c:2085 @ EXPORT_SYMBOL_GPL(rt_mutex_trylock); void __sched rt_mutex_unlock(struct rt_mutex *lock) { mutex_release(&lock->dep_map, _RET_IP_); - rt_mutex_fastunlock(lock, rt_mutex_slowunlock); + __rt_mutex_unlock(lock); } EXPORT_SYMBOL_GPL(rt_mutex_unlock); -/** - * Futex variant, that since futex variants do not use the fast-path, can be - * simple and will not need to retry. - */ -bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock, - struct wake_q_head *wake_q) +static bool __sched __rt_mutex_unlock_common(struct rt_mutex *lock, + struct wake_q_head *wake_q, + struct wake_q_head *wq_sleeper) { lockdep_assert_held(&lock->wait_lock); @ kernel/locking/rtmutex.c:2108 @ bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock, * avoid inversion prior to the wakeup. preempt_disable() * therein pairs with rt_mutex_postunlock(). */ - mark_wakeup_next_waiter(wake_q, lock); + mark_wakeup_next_waiter(wake_q, wq_sleeper, lock); return true; /* call postunlock() */ } +/** + * Futex variant, that since futex variants do not use the fast-path, can be + * simple and will not need to retry. + */ +bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock, + struct wake_q_head *wake_q, + struct wake_q_head *wq_sleeper) +{ + return __rt_mutex_unlock_common(lock, wake_q, wq_sleeper); +} + void __sched rt_mutex_futex_unlock(struct rt_mutex *lock) { DEFINE_WAKE_Q(wake_q); + DEFINE_WAKE_Q(wake_sleeper_q); unsigned long flags; bool postunlock; raw_spin_lock_irqsave(&lock->wait_lock, flags); - postunlock = __rt_mutex_futex_unlock(lock, &wake_q); + postunlock = __rt_mutex_futex_unlock(lock, &wake_q, &wake_sleeper_q); raw_spin_unlock_irqrestore(&lock->wait_lock, flags); if (postunlock) - rt_mutex_postunlock(&wake_q); + rt_mutex_postunlock(&wake_q, &wake_sleeper_q); } /** @ kernel/locking/rtmutex.c:2150 @ void __sched rt_mutex_futex_unlock(struct rt_mutex *lock) void rt_mutex_destroy(struct rt_mutex *lock) { WARN_ON(rt_mutex_is_locked(lock)); -#ifdef CONFIG_DEBUG_RT_MUTEXES - lock->magic = NULL; -#endif } EXPORT_SYMBOL_GPL(rt_mutex_destroy); @ kernel/locking/rtmutex.c:2172 @ void __rt_mutex_init(struct rt_mutex *lock, const char *name, if (name && key) debug_rt_mutex_init(lock, name, key); } -EXPORT_SYMBOL_GPL(__rt_mutex_init); +EXPORT_SYMBOL(__rt_mutex_init); /** * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a @ kernel/locking/rtmutex.c:2192 @ void rt_mutex_init_proxy_locked(struct rt_mutex *lock, struct task_struct *proxy_owner) { __rt_mutex_init(lock, NULL, NULL); +#ifdef CONFIG_DEBUG_SPINLOCK + /* + * get another key class for the wait_lock. LOCK_PI and UNLOCK_PI is + * holding the ->wait_lock of the proxy_lock while unlocking a sleeping + * lock. + */ + raw_spin_lock_init(&lock->wait_lock); +#endif debug_rt_mutex_proxy_lock(lock, proxy_owner); rt_mutex_set_owner(lock, proxy_owner); } @ kernel/locking/rtmutex.c:2222 @ void rt_mutex_proxy_unlock(struct rt_mutex *lock) rt_mutex_set_owner(lock, NULL); } +static void fixup_rt_mutex_blocked(struct rt_mutex *lock) +{ + struct task_struct *tsk = current; + /* + * RT has a problem here when the wait got interrupted by a timeout + * or a signal. task->pi_blocked_on is still set. The task must + * acquire the hash bucket lock when returning from this function. + * + * If the hash bucket lock is contended then the + * BUG_ON(rt_mutex_real_waiter(task->pi_blocked_on)) in + * task_blocks_on_rt_mutex() will trigger. This can be avoided by + * clearing task->pi_blocked_on which removes the task from the + * boosting chain of the rtmutex. That's correct because the task + * is not longer blocked on it. + */ + raw_spin_lock(&tsk->pi_lock); + tsk->pi_blocked_on = NULL; + raw_spin_unlock(&tsk->pi_lock); +} + /** * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task * @lock: the rt_mutex to take @ kernel/locking/rtmutex.c:2272 @ int __rt_mutex_start_proxy_lock(struct rt_mutex *lock, if (try_to_take_rt_mutex(lock, task, NULL)) return 1; +#ifdef CONFIG_PREEMPT_RT + /* + * In PREEMPT_RT there's an added race. + * If the task, that we are about to requeue, times out, + * it can set the PI_WAKEUP_INPROGRESS. This tells the requeue + * to skip this task. But right after the task sets + * its pi_blocked_on to PI_WAKEUP_INPROGRESS it can then + * block on the spin_lock(&hb->lock), which in RT is an rtmutex. + * This will replace the PI_WAKEUP_INPROGRESS with the actual + * lock that it blocks on. We *must not* place this task + * on this proxy lock in that case. + * + * To prevent this race, we first take the task's pi_lock + * and check if it has updated its pi_blocked_on. If it has, + * we assume that it woke up and we return -EAGAIN. + * Otherwise, we set the task's pi_blocked_on to + * PI_REQUEUE_INPROGRESS, so that if the task is waking up + * it will know that we are in the process of requeuing it. + */ + raw_spin_lock(&task->pi_lock); + if (task->pi_blocked_on) { + raw_spin_unlock(&task->pi_lock); + return -EAGAIN; + } + task->pi_blocked_on = PI_REQUEUE_INPROGRESS; + raw_spin_unlock(&task->pi_lock); +#endif + /* We enforce deadlock detection for futexes */ ret = task_blocks_on_rt_mutex(lock, waiter, task, RT_MUTEX_FULL_CHAINWALK); @ kernel/locking/rtmutex.c:2314 @ int __rt_mutex_start_proxy_lock(struct rt_mutex *lock, ret = 0; } - debug_rt_mutex_print_deadlock(waiter); + if (ret) + fixup_rt_mutex_blocked(lock); return ret; } @ kernel/locking/rtmutex.c:2400 @ int rt_mutex_wait_proxy_lock(struct rt_mutex *lock, raw_spin_lock_irq(&lock->wait_lock); /* sleep on the mutex */ set_current_state(TASK_INTERRUPTIBLE); - ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter); + ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter, NULL); /* * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might * have to fix that up. */ fixup_rt_mutex_waiters(lock); + if (ret) + fixup_rt_mutex_blocked(lock); + raw_spin_unlock_irq(&lock->wait_lock); return ret; @ kernel/locking/rtmutex.c:2470 @ bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock, return cleanup; } + +static inline int +ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ +#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH + unsigned int tmp; + + if (ctx->deadlock_inject_countdown-- == 0) { + tmp = ctx->deadlock_inject_interval; + if (tmp > UINT_MAX/4) + tmp = UINT_MAX; + else + tmp = tmp*2 + tmp + tmp/2; + + ctx->deadlock_inject_interval = tmp; + ctx->deadlock_inject_countdown = tmp; + ctx->contending_lock = lock; + + ww_mutex_unlock(lock); + + return -EDEADLK; + } +#endif + + return 0; +} + +#ifdef CONFIG_PREEMPT_RT +int __sched +ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ + int ret; + + might_sleep(); + + mutex_acquire_nest(&lock->base.dep_map, 0, 0, + ctx ? &ctx->dep_map : NULL, _RET_IP_); + ret = rt_mutex_slowlock(&lock->base.lock, TASK_INTERRUPTIBLE, NULL, 0, + ctx); + if (ret) + mutex_release(&lock->base.dep_map, _RET_IP_); + else if (!ret && ctx && ctx->acquired > 1) + return ww_mutex_deadlock_injection(lock, ctx); + + return ret; +} +EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); + +int __sched +ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ + int ret; + + might_sleep(); + + mutex_acquire_nest(&lock->base.dep_map, 0, 0, + ctx ? &ctx->dep_map : NULL, _RET_IP_); + ret = rt_mutex_slowlock(&lock->base.lock, TASK_UNINTERRUPTIBLE, NULL, 0, + ctx); + if (ret) + mutex_release(&lock->base.dep_map, _RET_IP_); + else if (!ret && ctx && ctx->acquired > 1) + return ww_mutex_deadlock_injection(lock, ctx); + + return ret; +} +EXPORT_SYMBOL_GPL(ww_mutex_lock); + +void __sched ww_mutex_unlock(struct ww_mutex *lock) +{ + /* + * The unlocking fastpath is the 0->1 transition from 'locked' + * into 'unlocked' state: + */ + if (lock->ctx) { +#ifdef CONFIG_DEBUG_MUTEXES + DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); +#endif + if (lock->ctx->acquired > 0) + lock->ctx->acquired--; + lock->ctx = NULL; + } + + mutex_release(&lock->base.dep_map, _RET_IP_); + __rt_mutex_unlock(&lock->base.lock); +} +EXPORT_SYMBOL(ww_mutex_unlock); + +int __rt_mutex_owner_current(struct rt_mutex *lock) +{ + return rt_mutex_owner(lock) == current; +} +EXPORT_SYMBOL(__rt_mutex_owner_current); +#endif @ kernel/locking/rtmutex.h:22 @ #define debug_rt_mutex_proxy_unlock(l) do { } while (0) #define debug_rt_mutex_unlock(l) do { } while (0) #define debug_rt_mutex_init(m, n, k) do { } while (0) -#define debug_rt_mutex_deadlock(d, a ,l) do { } while (0) -#define debug_rt_mutex_print_deadlock(w) do { } while (0) #define debug_rt_mutex_reset_waiter(w) do { } while (0) -static inline void rt_mutex_print_deadlock(struct rt_mutex_waiter *w) -{ - WARN(1, "rtmutex deadlock detected\n"); -} - static inline bool debug_rt_mutex_detect_deadlock(struct rt_mutex_waiter *w, enum rtmutex_chainwalk walk) { @ kernel/locking/rtmutex_common.h:18 @ #include <linux/rtmutex.h> #include <linux/sched/wake_q.h> +#include <linux/sched/debug.h> /* * This is the control structure for tasks blocked on a rt_mutex, @ kernel/locking/rtmutex_common.h:33 @ struct rt_mutex_waiter { struct rb_node pi_tree_entry; struct task_struct *task; struct rt_mutex *lock; -#ifdef CONFIG_DEBUG_RT_MUTEXES - unsigned long ip; - struct pid *deadlock_task_pid; - struct rt_mutex *deadlock_lock; -#endif int prio; + bool savestate; u64 deadline; }; @ kernel/locking/rtmutex_common.h:130 @ enum rtmutex_chainwalk { /* * PI-futex support (proxy locking functions, etc.): */ +#define PI_WAKEUP_INPROGRESS ((struct rt_mutex_waiter *) 1) +#define PI_REQUEUE_INPROGRESS ((struct rt_mutex_waiter *) 2) + extern struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock); extern void rt_mutex_init_proxy_locked(struct rt_mutex *lock, struct task_struct *proxy_owner); extern void rt_mutex_proxy_unlock(struct rt_mutex *lock); -extern void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter); +extern void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter, bool savetate); extern int __rt_mutex_start_proxy_lock(struct rt_mutex *lock, struct rt_mutex_waiter *waiter, struct task_struct *task); @ kernel/locking/rtmutex_common.h:155 @ extern int __rt_mutex_futex_trylock(struct rt_mutex *l); extern void rt_mutex_futex_unlock(struct rt_mutex *lock); extern bool __rt_mutex_futex_unlock(struct rt_mutex *lock, - struct wake_q_head *wqh); - -extern void rt_mutex_postunlock(struct wake_q_head *wake_q); + struct wake_q_head *wqh, + struct wake_q_head *wq_sleeper); + +extern void rt_mutex_postunlock(struct wake_q_head *wake_q, + struct wake_q_head *wake_sleeper_q); + +/* RW semaphore special interface */ +struct ww_acquire_ctx; + +extern int __rt_mutex_lock_state(struct rt_mutex *lock, int state); +extern int __rt_mutex_trylock(struct rt_mutex *lock); +extern void __rt_mutex_unlock(struct rt_mutex *lock); +int __sched rt_mutex_slowlock_locked(struct rt_mutex *lock, int state, + struct hrtimer_sleeper *timeout, + enum rtmutex_chainwalk chwalk, + struct ww_acquire_ctx *ww_ctx, + struct rt_mutex_waiter *waiter); +void __sched rt_spin_lock_slowlock_locked(struct rt_mutex *lock, + struct rt_mutex_waiter *waiter, + unsigned long flags); +void __sched rt_spin_lock_slowunlock(struct rt_mutex *lock); #ifdef CONFIG_DEBUG_RT_MUTEXES # include "rtmutex-debug.h" @ kernel/locking/rwlock-rt.c:4 @ +// SPDX-License-Identifier: GPL-2.0-only +#include <linux/sched/debug.h> +#include <linux/export.h> + +#include "rtmutex_common.h" +#include <linux/rwlock_types_rt.h> + +/* + * RT-specific reader/writer locks + * + * write_lock() + * 1) Lock lock->rtmutex + * 2) Remove the reader BIAS to force readers into the slow path + * 3) Wait until all readers have left the critical region + * 4) Mark it write locked + * + * write_unlock() + * 1) Remove the write locked marker + * 2) Set the reader BIAS so readers can use the fast path again + * 3) Unlock lock->rtmutex to release blocked readers + * + * read_lock() + * 1) Try fast path acquisition (reader BIAS is set) + * 2) Take lock->rtmutex.wait_lock which protects the writelocked flag + * 3) If !writelocked, acquire it for read + * 4) If writelocked, block on lock->rtmutex + * 5) unlock lock->rtmutex, goto 1) + * + * read_unlock() + * 1) Try fast path release (reader count != 1) + * 2) Wake the writer waiting in write_lock()#3 + * + * read_lock()#3 has the consequence, that rw locks on RT are not writer + * fair, but writers, which should be avoided in RT tasks (think tasklist + * lock), are subject to the rtmutex priority/DL inheritance mechanism. + * + * It's possible to make the rw locks writer fair by keeping a list of + * active readers. A blocked writer would force all newly incoming readers + * to block on the rtmutex, but the rtmutex would have to be proxy locked + * for one reader after the other. We can't use multi-reader inheritance + * because there is no way to support that with + * SCHED_DEADLINE. Implementing the one by one reader boosting/handover + * mechanism is a major surgery for a very dubious value. + * + * The risk of writer starvation is there, but the pathological use cases + * which trigger it are not necessarily the typical RT workloads. + */ + +void __rwlock_biased_rt_init(struct rt_rw_lock *lock, const char *name, + struct lock_class_key *key) +{ +#ifdef CONFIG_DEBUG_LOCK_ALLOC + /* + * Make sure we are not reinitializing a held semaphore: + */ + debug_check_no_locks_freed((void *)lock, sizeof(*lock)); + lockdep_init_map(&lock->dep_map, name, key, 0); +#endif + atomic_set(&lock->readers, READER_BIAS); + rt_mutex_init(&lock->rtmutex); + lock->rtmutex.save_state = 1; +} + +static int __read_rt_trylock(struct rt_rw_lock *lock) +{ + int r, old; + + /* + * Increment reader count, if lock->readers < 0, i.e. READER_BIAS is + * set. + */ + for (r = atomic_read(&lock->readers); r < 0;) { + old = atomic_cmpxchg(&lock->readers, r, r + 1); + if (likely(old == r)) + return 1; + r = old; + } + return 0; +} + +static void __read_rt_lock(struct rt_rw_lock *lock) +{ + struct rt_mutex *m = &lock->rtmutex; + struct rt_mutex_waiter waiter; + unsigned long flags; + + if (__read_rt_trylock(lock)) + return; + + raw_spin_lock_irqsave(&m->wait_lock, flags); + /* + * Allow readers as long as the writer has not completely + * acquired the semaphore for write. + */ + if (atomic_read(&lock->readers) != WRITER_BIAS) { + atomic_inc(&lock->readers); + raw_spin_unlock_irqrestore(&m->wait_lock, flags); + return; + } + + /* + * Call into the slow lock path with the rtmutex->wait_lock + * held, so this can't result in the following race: + * + * Reader1 Reader2 Writer + * read_lock() + * write_lock() + * rtmutex_lock(m) + * swait() + * read_lock() + * unlock(m->wait_lock) + * read_unlock() + * swake() + * lock(m->wait_lock) + * lock->writelocked=true + * unlock(m->wait_lock) + * + * write_unlock() + * lock->writelocked=false + * rtmutex_unlock(m) + * read_lock() + * write_lock() + * rtmutex_lock(m) + * swait() + * rtmutex_lock(m) + * + * That would put Reader1 behind the writer waiting on + * Reader2 to call read_unlock() which might be unbound. + */ + rt_mutex_init_waiter(&waiter, true); + rt_spin_lock_slowlock_locked(m, &waiter, flags); + /* + * The slowlock() above is guaranteed to return with the rtmutex is + * now held, so there can't be a writer active. Increment the reader + * count and immediately drop the rtmutex again. + */ + atomic_inc(&lock->readers); + raw_spin_unlock_irqrestore(&m->wait_lock, flags); + rt_spin_lock_slowunlock(m); + + debug_rt_mutex_free_waiter(&waiter); +} + +static void __read_rt_unlock(struct rt_rw_lock *lock) +{ + struct rt_mutex *m = &lock->rtmutex; + struct task_struct *tsk; + + /* + * sem->readers can only hit 0 when a writer is waiting for the + * active readers to leave the critical region. + */ + if (!atomic_dec_and_test(&lock->readers)) + return; + + raw_spin_lock_irq(&m->wait_lock); + /* + * Wake the writer, i.e. the rtmutex owner. It might release the + * rtmutex concurrently in the fast path, but to clean up the rw + * lock it needs to acquire m->wait_lock. The worst case which can + * happen is a spurious wakeup. + */ + tsk = rt_mutex_owner(m); + if (tsk) + wake_up_process(tsk); + + raw_spin_unlock_irq(&m->wait_lock); +} + +static void __write_unlock_common(struct rt_rw_lock *lock, int bias, + unsigned long flags) +{ + struct rt_mutex *m = &lock->rtmutex; + + atomic_add(READER_BIAS - bias, &lock->readers); + raw_spin_unlock_irqrestore(&m->wait_lock, flags); + rt_spin_lock_slowunlock(m); +} + +static void __write_rt_lock(struct rt_rw_lock *lock) +{ + struct rt_mutex *m = &lock->rtmutex; + struct task_struct *self = current; + unsigned long flags; + + /* Take the rtmutex as a first step */ + __rt_spin_lock(m); + + /* Force readers into slow path */ + atomic_sub(READER_BIAS, &lock->readers); + + raw_spin_lock_irqsave(&m->wait_lock, flags); + + raw_spin_lock(&self->pi_lock); + self->saved_state = self->state; + __set_current_state_no_track(TASK_UNINTERRUPTIBLE); + raw_spin_unlock(&self->pi_lock); + + for (;;) { + /* Have all readers left the critical region? */ + if (!atomic_read(&lock->readers)) { + atomic_set(&lock->readers, WRITER_BIAS); + raw_spin_lock(&self->pi_lock); + __set_current_state_no_track(self->saved_state); + self->saved_state = TASK_RUNNING; + raw_spin_unlock(&self->pi_lock); + raw_spin_unlock_irqrestore(&m->wait_lock, flags); + return; + } + + raw_spin_unlock_irqrestore(&m->wait_lock, flags); + + if (atomic_read(&lock->readers) != 0) + preempt_schedule_lock(); + + raw_spin_lock_irqsave(&m->wait_lock, flags); + + raw_spin_lock(&self->pi_lock); + __set_current_state_no_track(TASK_UNINTERRUPTIBLE); + raw_spin_unlock(&self->pi_lock); + } +} + +static int __write_rt_trylock(struct rt_rw_lock *lock) +{ + struct rt_mutex *m = &lock->rtmutex; + unsigned long flags; + + if (!__rt_mutex_trylock(m)) + return 0; + + atomic_sub(READER_BIAS, &lock->readers); + + raw_spin_lock_irqsave(&m->wait_lock, flags); + if (!atomic_read(&lock->readers)) { + atomic_set(&lock->readers, WRITER_BIAS); + raw_spin_unlock_irqrestore(&m->wait_lock, flags); + return 1; + } + __write_unlock_common(lock, 0, flags); + return 0; +} + +static void __write_rt_unlock(struct rt_rw_lock *lock) +{ + struct rt_mutex *m = &lock->rtmutex; + unsigned long flags; + + raw_spin_lock_irqsave(&m->wait_lock, flags); + __write_unlock_common(lock, WRITER_BIAS, flags); +} + +int __lockfunc rt_read_can_lock(rwlock_t *rwlock) +{ + return atomic_read(&rwlock->readers) < 0; +} + +int __lockfunc rt_write_can_lock(rwlock_t *rwlock) +{ + return atomic_read(&rwlock->readers) == READER_BIAS; +} + +/* + * The common functions which get wrapped into the rwlock API. + */ +int __lockfunc rt_read_trylock(rwlock_t *rwlock) +{ + int ret; + + ret = __read_rt_trylock(rwlock); + if (ret) { + rwlock_acquire_read(&rwlock->dep_map, 0, 1, _RET_IP_); + rcu_read_lock(); + migrate_disable(); + } + return ret; +} +EXPORT_SYMBOL(rt_read_trylock); + +int __lockfunc rt_write_trylock(rwlock_t *rwlock) +{ + int ret; + + ret = __write_rt_trylock(rwlock); + if (ret) { + rwlock_acquire(&rwlock->dep_map, 0, 1, _RET_IP_); + rcu_read_lock(); + migrate_disable(); + } + return ret; +} +EXPORT_SYMBOL(rt_write_trylock); + +void __lockfunc rt_read_lock(rwlock_t *rwlock) +{ + rwlock_acquire_read(&rwlock->dep_map, 0, 0, _RET_IP_); + __read_rt_lock(rwlock); + rcu_read_lock(); + migrate_disable(); +} +EXPORT_SYMBOL(rt_read_lock); + +void __lockfunc rt_write_lock(rwlock_t *rwlock) +{ + rwlock_acquire(&rwlock->dep_map, 0, 0, _RET_IP_); + __write_rt_lock(rwlock); + rcu_read_lock(); + migrate_disable(); +} +EXPORT_SYMBOL(rt_write_lock); + +void __lockfunc rt_read_unlock(rwlock_t *rwlock) +{ + rwlock_release(&rwlock->dep_map, _RET_IP_); + migrate_enable(); + rcu_read_unlock(); + __read_rt_unlock(rwlock); +} +EXPORT_SYMBOL(rt_read_unlock); + +void __lockfunc rt_write_unlock(rwlock_t *rwlock) +{ + rwlock_release(&rwlock->dep_map, _RET_IP_); + migrate_enable(); + rcu_read_unlock(); + __write_rt_unlock(rwlock); +} +EXPORT_SYMBOL(rt_write_unlock); + +void __rt_rwlock_init(rwlock_t *rwlock, char *name, struct lock_class_key *key) +{ + __rwlock_biased_rt_init(rwlock, name, key); +} +EXPORT_SYMBOL(__rt_rwlock_init); @ kernel/locking/rwsem-rt.c:4 @ +// SPDX-License-Identifier: GPL-2.0-only +#include <linux/rwsem.h> +#include <linux/sched/debug.h> +#include <linux/sched/signal.h> +#include <linux/export.h> +#include <linux/blkdev.h> + +#include "rtmutex_common.h" + +/* + * RT-specific reader/writer semaphores + * + * down_write() + * 1) Lock sem->rtmutex + * 2) Remove the reader BIAS to force readers into the slow path + * 3) Wait until all readers have left the critical region + * 4) Mark it write locked + * + * up_write() + * 1) Remove the write locked marker + * 2) Set the reader BIAS so readers can use the fast path again + * 3) Unlock sem->rtmutex to release blocked readers + * + * down_read() + * 1) Try fast path acquisition (reader BIAS is set) + * 2) Take sem->rtmutex.wait_lock which protects the writelocked flag + * 3) If !writelocked, acquire it for read + * 4) If writelocked, block on sem->rtmutex + * 5) unlock sem->rtmutex, goto 1) + * + * up_read() + * 1) Try fast path release (reader count != 1) + * 2) Wake the writer waiting in down_write()#3 + * + * down_read()#3 has the consequence, that rw semaphores on RT are not writer + * fair, but writers, which should be avoided in RT tasks (think mmap_sem), + * are subject to the rtmutex priority/DL inheritance mechanism. + * + * It's possible to make the rw semaphores writer fair by keeping a list of + * active readers. A blocked writer would force all newly incoming readers to + * block on the rtmutex, but the rtmutex would have to be proxy locked for one + * reader after the other. We can't use multi-reader inheritance because there + * is no way to support that with SCHED_DEADLINE. Implementing the one by one + * reader boosting/handover mechanism is a major surgery for a very dubious + * value. + * + * The risk of writer starvation is there, but the pathological use cases + * which trigger it are not necessarily the typical RT workloads. + */ + +void __rwsem_init(struct rw_semaphore *sem, const char *name, + struct lock_class_key *key) +{ +#ifdef CONFIG_DEBUG_LOCK_ALLOC + /* + * Make sure we are not reinitializing a held semaphore: + */ + debug_check_no_locks_freed((void *)sem, sizeof(*sem)); + lockdep_init_map(&sem->dep_map, name, key, 0); +#endif + atomic_set(&sem->readers, READER_BIAS); +} +EXPORT_SYMBOL(__rwsem_init); + +int __down_read_trylock(struct rw_semaphore *sem) +{ + int r, old; + + /* + * Increment reader count, if sem->readers < 0, i.e. READER_BIAS is + * set. + */ + for (r = atomic_read(&sem->readers); r < 0;) { + old = atomic_cmpxchg(&sem->readers, r, r + 1); + if (likely(old == r)) + return 1; + r = old; + } + return 0; +} + +static int __sched __down_read_common(struct rw_semaphore *sem, int state) +{ + struct rt_mutex *m = &sem->rtmutex; + struct rt_mutex_waiter waiter; + int ret; + + if (__down_read_trylock(sem)) + return 0; + + /* + * Flush blk before ->pi_blocked_on is set. At schedule() time it is too + * late if one of the callbacks needs to acquire a sleeping lock. + */ + if (blk_needs_flush_plug(current)) + blk_schedule_flush_plug(current); + + might_sleep(); + raw_spin_lock_irq(&m->wait_lock); + /* + * Allow readers as long as the writer has not completely + * acquired the semaphore for write. + */ + if (atomic_read(&sem->readers) != WRITER_BIAS) { + atomic_inc(&sem->readers); + raw_spin_unlock_irq(&m->wait_lock); + return 0; + } + + /* + * Call into the slow lock path with the rtmutex->wait_lock + * held, so this can't result in the following race: + * + * Reader1 Reader2 Writer + * down_read() + * down_write() + * rtmutex_lock(m) + * swait() + * down_read() + * unlock(m->wait_lock) + * up_read() + * swake() + * lock(m->wait_lock) + * sem->writelocked=true + * unlock(m->wait_lock) + * + * up_write() + * sem->writelocked=false + * rtmutex_unlock(m) + * down_read() + * down_write() + * rtmutex_lock(m) + * swait() + * rtmutex_lock(m) + * + * That would put Reader1 behind the writer waiting on + * Reader2 to call up_read() which might be unbound. + */ + rt_mutex_init_waiter(&waiter, false); + ret = rt_mutex_slowlock_locked(m, state, NULL, RT_MUTEX_MIN_CHAINWALK, + NULL, &waiter); + /* + * The slowlock() above is guaranteed to return with the rtmutex (for + * ret = 0) is now held, so there can't be a writer active. Increment + * the reader count and immediately drop the rtmutex again. + * For ret != 0 we don't hold the rtmutex and need unlock the wait_lock. + * We don't own the lock then. + */ + if (!ret) + atomic_inc(&sem->readers); + raw_spin_unlock_irq(&m->wait_lock); + if (!ret) + __rt_mutex_unlock(m); + + debug_rt_mutex_free_waiter(&waiter); + return ret; +} + +void __down_read(struct rw_semaphore *sem) +{ + int ret; + + ret = __down_read_common(sem, TASK_UNINTERRUPTIBLE); + WARN_ON_ONCE(ret); +} + +int __down_read_interruptible(struct rw_semaphore *sem) +{ + int ret; + + ret = __down_read_common(sem, TASK_INTERRUPTIBLE); + if (likely(!ret)) + return ret; + WARN_ONCE(ret != -EINTR, "Unexpected state: %d\n", ret); + return -EINTR; +} + +int __down_read_killable(struct rw_semaphore *sem) +{ + int ret; + + ret = __down_read_common(sem, TASK_KILLABLE); + if (likely(!ret)) + return ret; + WARN_ONCE(ret != -EINTR, "Unexpected state: %d\n", ret); + return -EINTR; +} + +void __up_read(struct rw_semaphore *sem) +{ + struct rt_mutex *m = &sem->rtmutex; + struct task_struct *tsk; + + /* + * sem->readers can only hit 0 when a writer is waiting for the + * active readers to leave the critical region. + */ + if (!atomic_dec_and_test(&sem->readers)) + return; + + raw_spin_lock_irq(&m->wait_lock); + /* + * Wake the writer, i.e. the rtmutex owner. It might release the + * rtmutex concurrently in the fast path (due to a signal), but to + * clean up the rwsem it needs to acquire m->wait_lock. The worst + * case which can happen is a spurious wakeup. + */ + tsk = rt_mutex_owner(m); + if (tsk) + wake_up_process(tsk); + + raw_spin_unlock_irq(&m->wait_lock); +} + +static void __up_write_unlock(struct rw_semaphore *sem, int bias, + unsigned long flags) +{ + struct rt_mutex *m = &sem->rtmutex; + + atomic_add(READER_BIAS - bias, &sem->readers); + raw_spin_unlock_irqrestore(&m->wait_lock, flags); + __rt_mutex_unlock(m); +} + +static int __sched __down_write_common(struct rw_semaphore *sem, int state) +{ + struct rt_mutex *m = &sem->rtmutex; + unsigned long flags; + + /* + * Flush blk before ->pi_blocked_on is set. At schedule() time it is too + * late if one of the callbacks needs to acquire a sleeping lock. + */ + if (blk_needs_flush_plug(current)) + blk_schedule_flush_plug(current); + + /* Take the rtmutex as a first step */ + if (__rt_mutex_lock_state(m, state)) + return -EINTR; + + /* Force readers into slow path */ + atomic_sub(READER_BIAS, &sem->readers); + might_sleep(); + + set_current_state(state); + for (;;) { + raw_spin_lock_irqsave(&m->wait_lock, flags); + /* Have all readers left the critical region? */ + if (!atomic_read(&sem->readers)) { + atomic_set(&sem->readers, WRITER_BIAS); + __set_current_state(TASK_RUNNING); + raw_spin_unlock_irqrestore(&m->wait_lock, flags); + return 0; + } + + if (signal_pending_state(state, current)) { + __set_current_state(TASK_RUNNING); + __up_write_unlock(sem, 0, flags); + return -EINTR; + } + raw_spin_unlock_irqrestore(&m->wait_lock, flags); + + if (atomic_read(&sem->readers) != 0) { + schedule(); + set_current_state(state); + } + } +} + +void __sched __down_write(struct rw_semaphore *sem) +{ + __down_write_common(sem, TASK_UNINTERRUPTIBLE); +} + +int __sched __down_write_killable(struct rw_semaphore *sem) +{ + return __down_write_common(sem, TASK_KILLABLE); +} + +int __down_write_trylock(struct rw_semaphore *sem) +{ + struct rt_mutex *m = &sem->rtmutex; + unsigned long flags; + + if (!__rt_mutex_trylock(m)) + return 0; + + atomic_sub(READER_BIAS, &sem->readers); + + raw_spin_lock_irqsave(&m->wait_lock, flags); + if (!atomic_read(&sem->readers)) { + atomic_set(&sem->readers, WRITER_BIAS); + raw_spin_unlock_irqrestore(&m->wait_lock, flags); + return 1; + } + __up_write_unlock(sem, 0, flags); + return 0; +} + +void __up_write(struct rw_semaphore *sem) +{ + struct rt_mutex *m = &sem->rtmutex; + unsigned long flags; + + raw_spin_lock_irqsave(&m->wait_lock, flags); + __up_write_unlock(sem, WRITER_BIAS, flags); +} + +void __downgrade_write(struct rw_semaphore *sem) +{ + struct rt_mutex *m = &sem->rtmutex; + unsigned long flags; + + raw_spin_lock_irqsave(&m->wait_lock, flags); + /* Release it and account current as reader */ + __up_write_unlock(sem, WRITER_BIAS - 1, flags); +} @ kernel/locking/rwsem.c:31 @ #include <linux/rwsem.h> #include <linux/atomic.h> +#ifndef CONFIG_PREEMPT_RT #include "lock_events.h" /* @ kernel/locking/rwsem.c:1498 @ static inline void __downgrade_write(struct rw_semaphore *sem) if (tmp & RWSEM_FLAG_WAITERS) rwsem_downgrade_wake(sem); } +#endif /* * lock for reading @ kernel/locking/rwsem.c:1662 @ void down_read_non_owner(struct rw_semaphore *sem) { might_sleep(); __down_read(sem); +#ifndef CONFIG_PREEMPT_RT __rwsem_set_reader_owned(sem, NULL); +#endif } EXPORT_SYMBOL(down_read_non_owner); @ kernel/locking/rwsem.c:1693 @ EXPORT_SYMBOL(down_write_killable_nested); void up_read_non_owner(struct rw_semaphore *sem) { +#ifndef CONFIG_PREEMPT_RT DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); +#endif __up_read(sem); } EXPORT_SYMBOL(up_read_non_owner); @ kernel/locking/spinlock.c:127 @ void __lockfunc __raw_##op##_lock_bh(locktype##_t *lock) \ * __[spin|read|write]_lock_bh() */ BUILD_LOCK_OPS(spin, raw_spinlock); + +#ifndef CONFIG_PREEMPT_RT BUILD_LOCK_OPS(read, rwlock); BUILD_LOCK_OPS(write, rwlock); +#endif #endif @ kernel/locking/spinlock.c:215 @ void __lockfunc _raw_spin_unlock_bh(raw_spinlock_t *lock) EXPORT_SYMBOL(_raw_spin_unlock_bh); #endif +#ifndef CONFIG_PREEMPT_RT + #ifndef CONFIG_INLINE_READ_TRYLOCK int __lockfunc _raw_read_trylock(rwlock_t *lock) { @ kernel/locking/spinlock.c:361 @ void __lockfunc _raw_write_unlock_bh(rwlock_t *lock) EXPORT_SYMBOL(_raw_write_unlock_bh); #endif +#endif /* !PREEMPT_RT */ + #ifdef CONFIG_DEBUG_LOCK_ALLOC void __lockfunc _raw_spin_lock_nested(raw_spinlock_t *lock, int subclass) @ kernel/locking/spinlock_debug.c:34 @ void __raw_spin_lock_init(raw_spinlock_t *lock, const char *name, EXPORT_SYMBOL(__raw_spin_lock_init); +#ifndef CONFIG_PREEMPT_RT void __rwlock_init(rwlock_t *lock, const char *name, struct lock_class_key *key) { @ kernel/locking/spinlock_debug.c:52 @ void __rwlock_init(rwlock_t *lock, const char *name, } EXPORT_SYMBOL(__rwlock_init); +#endif static void spin_dump(raw_spinlock_t *lock, const char *msg) { @ kernel/locking/spinlock_debug.c:144 @ void do_raw_spin_unlock(raw_spinlock_t *lock) arch_spin_unlock(&lock->raw_lock); } +#ifndef CONFIG_PREEMPT_RT static void rwlock_bug(rwlock_t *lock, const char *msg) { if (!debug_locks_off()) @ kernel/locking/spinlock_debug.c:234 @ void do_raw_write_unlock(rwlock_t *lock) debug_write_unlock(lock); arch_write_unlock(&lock->raw_lock); } + +#endif @ kernel/notifier.c:145 @ int atomic_notifier_chain_register(struct atomic_notifier_head *nh, unsigned long flags; int ret; - spin_lock_irqsave(&nh->lock, flags); + raw_spin_lock_irqsave(&nh->lock, flags); ret = notifier_chain_register(&nh->head, n); - spin_unlock_irqrestore(&nh->lock, flags); + raw_spin_unlock_irqrestore(&nh->lock, flags); return ret; } EXPORT_SYMBOL_GPL(atomic_notifier_chain_register); @ kernel/notifier.c:167 @ int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh, unsigned long flags; int ret; - spin_lock_irqsave(&nh->lock, flags); + raw_spin_lock_irqsave(&nh->lock, flags); ret = notifier_chain_unregister(&nh->head, n); - spin_unlock_irqrestore(&nh->lock, flags); + raw_spin_unlock_irqrestore(&nh->lock, flags); synchronize_rcu(); return ret; } @ kernel/notifier.c:185 @ int atomic_notifier_call_chain_robust(struct atomic_notifier_head *nh, * Musn't use RCU; because then the notifier list can * change between the up and down traversal. */ - spin_lock_irqsave(&nh->lock, flags); + raw_spin_lock_irqsave(&nh->lock, flags); ret = notifier_call_chain_robust(&nh->head, val_up, val_down, v); - spin_unlock_irqrestore(&nh->lock, flags); + raw_spin_unlock_irqrestore(&nh->lock, flags); return ret; } @ kernel/panic.c:180 @ static void panic_print_sys_info(void) void panic(const char *fmt, ...) { static char buf[1024]; + va_list args2; va_list args; long i, i_next = 0, len; int state = 0; int old_cpu, this_cpu; bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers; + console_verbose(); + pr_emerg("Kernel panic - not syncing:\n"); + va_start(args2, fmt); + va_copy(args, args2); + vprintk(fmt, args2); + va_end(args2); +#ifdef CONFIG_DEBUG_BUGVERBOSE + /* + * Avoid nested stack-dumping if a panic occurs during oops processing + */ + if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) + dump_stack(); +#endif + pr_flush(1000, true); + /* * Disable local interrupts. This will prevent panic_smp_self_stop * from deadlocking the first cpu that invokes the panic, since @ kernel/panic.c:232 @ void panic(const char *fmt, ...) if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu) panic_smp_self_stop(); - console_verbose(); bust_spinlocks(1); - va_start(args, fmt); len = vscnprintf(buf, sizeof(buf), fmt, args); va_end(args); if (len && buf[len - 1] == '\n') buf[len - 1] = '\0'; - pr_emerg("Kernel panic - not syncing: %s\n", buf); -#ifdef CONFIG_DEBUG_BUGVERBOSE - /* - * Avoid nested stack-dumping if a panic occurs during oops processing - */ - if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) - dump_stack(); -#endif - /* * If kgdb is enabled, give it a chance to run before we stop all * the other CPUs or else we won't be able to debug processes left @ kernel/panic.c:255 @ void panic(const char *fmt, ...) * Bypass the panic_cpu check and call __crash_kexec directly. */ if (!_crash_kexec_post_notifiers) { - printk_safe_flush_on_panic(); __crash_kexec(NULL); /* @ kernel/panic.c:278 @ void panic(const char *fmt, ...) */ atomic_notifier_call_chain(&panic_notifier_list, 0, buf); - /* Call flush even twice. It tries harder with a single online CPU */ - printk_safe_flush_on_panic(); kmsg_dump(KMSG_DUMP_PANIC); /* @ kernel/panic.c:547 @ static u64 oops_id; static int init_oops_id(void) { +#ifndef CONFIG_PREEMPT_RT if (!oops_id) get_random_bytes(&oops_id, sizeof(oops_id)); else +#endif oops_id++; return 0; @ kernel/panic.c:562 @ static void print_oops_end_marker(void) { init_oops_id(); pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id); + pr_flush(1000, true); } /* @ kernel/printk/Makefile:1 @ # SPDX-License-Identifier: GPL-2.0-only obj-y = printk.o -obj-$(CONFIG_PRINTK) += printk_safe.o obj-$(CONFIG_A11Y_BRAILLE_CONSOLE) += braille.o obj-$(CONFIG_PRINTK) += printk_ringbuffer.o @ kernel/printk/internal.h:1 @ -/* SPDX-License-Identifier: GPL-2.0-or-later */ -/* - * internal.h - printk internal definitions - */ -#include <linux/percpu.h> - -#ifdef CONFIG_PRINTK - -#define PRINTK_SAFE_CONTEXT_MASK 0x007ffffff -#define PRINTK_NMI_DIRECT_CONTEXT_MASK 0x008000000 -#define PRINTK_NMI_CONTEXT_MASK 0xff0000000 - -#define PRINTK_NMI_CONTEXT_OFFSET 0x010000000 - -extern raw_spinlock_t logbuf_lock; - -__printf(4, 0) -int vprintk_store(int facility, int level, - const struct dev_printk_info *dev_info, - const char *fmt, va_list args); - -__printf(1, 0) int vprintk_default(const char *fmt, va_list args); -__printf(1, 0) int vprintk_deferred(const char *fmt, va_list args); -__printf(1, 0) int vprintk_func(const char *fmt, va_list args); -void __printk_safe_enter(void); -void __printk_safe_exit(void); - -void printk_safe_init(void); -bool printk_percpu_data_ready(void); - -#define printk_safe_enter_irqsave(flags) \ - do { \ - local_irq_save(flags); \ - __printk_safe_enter(); \ - } while (0) - -#define printk_safe_exit_irqrestore(flags) \ - do { \ - __printk_safe_exit(); \ - local_irq_restore(flags); \ - } while (0) - -#define printk_safe_enter_irq() \ - do { \ - local_irq_disable(); \ - __printk_safe_enter(); \ - } while (0) - -#define printk_safe_exit_irq() \ - do { \ - __printk_safe_exit(); \ - local_irq_enable(); \ - } while (0) - -void defer_console_output(void); - -#else - -__printf(1, 0) int vprintk_func(const char *fmt, va_list args) { return 0; } - -/* - * In !PRINTK builds we still export logbuf_lock spin_lock, console_sem - * semaphore and some of console functions (console_unlock()/etc.), so - * printk-safe must preserve the existing local IRQ guarantees. - */ -#define printk_safe_enter_irqsave(flags) local_irq_save(flags) -#define printk_safe_exit_irqrestore(flags) local_irq_restore(flags) - -#define printk_safe_enter_irq() local_irq_disable() -#define printk_safe_exit_irq() local_irq_enable() - -static inline void printk_safe_init(void) { } -static inline bool printk_percpu_data_ready(void) { return false; } -#endif /* CONFIG_PRINTK */ @ kernel/printk/printk.c:47 @ #include <linux/irq_work.h> #include <linux/ctype.h> #include <linux/uio.h> +#include <linux/kthread.h> +#include <linux/kdb.h> +#include <linux/clocksource.h> #include <linux/sched/clock.h> #include <linux/sched/debug.h> #include <linux/sched/task_stack.h> @ kernel/printk/printk.c:64 @ #include "printk_ringbuffer.h" #include "console_cmdline.h" #include "braille.h" -#include "internal.h" int console_printk[4] = { CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ @ kernel/printk/printk.c:230 @ static int nr_ext_console_drivers; static int __down_trylock_console_sem(unsigned long ip) { - int lock_failed; - unsigned long flags; - - /* - * Here and in __up_console_sem() we need to be in safe mode, - * because spindump/WARN/etc from under console ->lock will - * deadlock in printk()->down_trylock_console_sem() otherwise. - */ - printk_safe_enter_irqsave(flags); - lock_failed = down_trylock(&console_sem); - printk_safe_exit_irqrestore(flags); - - if (lock_failed) + if (down_trylock(&console_sem)) return 1; mutex_acquire(&console_lock_dep_map, 0, 1, ip); return 0; @ kernel/printk/printk.c:239 @ static int __down_trylock_console_sem(unsigned long ip) static void __up_console_sem(unsigned long ip) { - unsigned long flags; - mutex_release(&console_lock_dep_map, ip); - printk_safe_enter_irqsave(flags); up(&console_sem); - printk_safe_exit_irqrestore(flags); } #define up_console_sem() __up_console_sem(_RET_IP_) @ kernel/printk/printk.c:255 @ static void __up_console_sem(unsigned long ip) */ static int console_locked, console_suspended; -/* - * If exclusive_console is non-NULL then only this console is to be printed to. - */ -static struct console *exclusive_console; - /* * Array of consoles built from command line options (console=) */ @ kernel/printk/printk.c:339 @ enum log_flags { LOG_CONT = 8, /* text is a fragment of a continuation line */ }; -/* - * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken - * within the scheduler's rq lock. It must be released before calling - * console_unlock() or anything else that might wake up a process. - */ -DEFINE_RAW_SPINLOCK(logbuf_lock); +#ifdef CONFIG_PRINTK +/* syslog_lock protects syslog_* variables and write access to clear_seq. */ +static DEFINE_SPINLOCK(syslog_lock); -/* - * Helper macros to lock/unlock logbuf_lock and switch between - * printk-safe/unsafe modes. - */ -#define logbuf_lock_irq() \ - do { \ - printk_safe_enter_irq(); \ - raw_spin_lock(&logbuf_lock); \ - } while (0) - -#define logbuf_unlock_irq() \ - do { \ - raw_spin_unlock(&logbuf_lock); \ - printk_safe_exit_irq(); \ - } while (0) - -#define logbuf_lock_irqsave(flags) \ - do { \ - printk_safe_enter_irqsave(flags); \ - raw_spin_lock(&logbuf_lock); \ - } while (0) - -#define logbuf_unlock_irqrestore(flags) \ - do { \ - raw_spin_unlock(&logbuf_lock); \ - printk_safe_exit_irqrestore(flags); \ - } while (0) +/* Set to enable sync mode. Once set, it is never cleared. */ +static bool sync_mode; -#ifdef CONFIG_PRINTK DECLARE_WAIT_QUEUE_HEAD(log_wait); +/* All 3 protected by @syslog_lock. */ /* the next printk record to read by syslog(READ) or /proc/kmsg */ static u64 syslog_seq; static size_t syslog_partial; static bool syslog_time; -/* the next printk record to write to the console */ -static u64 console_seq; -static u64 exclusive_console_stop_seq; -static unsigned long console_dropped; +struct latched_seq { + seqcount_latch_t latch; + u64 val[2]; +}; -/* the next printk record to read after the last 'clear' command */ -static u64 clear_seq; +/* + * The next printk record to read after the last 'clear' command. There are + * two copies (updated with seqcount_latch) so that reads can locklessly + * access a valid value. Writers are synchronized by @syslog_lock. + */ +static struct latched_seq clear_seq = { + .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), + .val[0] = 0, + .val[1] = 0, +}; #ifdef CONFIG_PRINTK_CALLER #define PREFIX_MAX 48 #else #define PREFIX_MAX 32 #endif + +/* the maximum size allowed to be reserved for a record */ #define LOG_LINE_MAX (1024 - PREFIX_MAX) #define LOG_LEVEL(v) ((v) & 0x07) @ kernel/printk/printk.c:413 @ static struct printk_ringbuffer *prb = &printk_rb_static; */ static bool __printk_percpu_data_ready __read_mostly; -bool printk_percpu_data_ready(void) +static bool printk_percpu_data_ready(void) { return __printk_percpu_data_ready; } +/* Must be called under syslog_lock. */ +static void latched_seq_write(struct latched_seq *ls, u64 val) +{ + raw_write_seqcount_latch(&ls->latch); + ls->val[0] = val; + raw_write_seqcount_latch(&ls->latch); + ls->val[1] = val; +} + +/* Can be called from any context. */ +static u64 latched_seq_read_nolock(struct latched_seq *ls) +{ + unsigned int seq; + unsigned int idx; + u64 val; + + do { + seq = raw_read_seqcount_latch(&ls->latch); + idx = seq & 0x1; + val = ls->val[idx]; + } while (read_seqcount_latch_retry(&ls->latch, seq)); + + return val; +} + /* Return log buffer address */ char *log_buf_addr_get(void) { @ kernel/printk/printk.c:482 @ static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) *trunc_msg_len = 0; } -/* insert record into the buffer, discard old ones, update heads */ -static int log_store(u32 caller_id, int facility, int level, - enum log_flags flags, u64 ts_nsec, - const struct dev_printk_info *dev_info, - const char *text, u16 text_len) -{ - struct prb_reserved_entry e; - struct printk_record r; - u16 trunc_msg_len = 0; - - prb_rec_init_wr(&r, text_len); - - if (!prb_reserve(&e, prb, &r)) { - /* truncate the message if it is too long for empty buffer */ - truncate_msg(&text_len, &trunc_msg_len); - prb_rec_init_wr(&r, text_len + trunc_msg_len); - /* survive when the log buffer is too small for trunc_msg */ - if (!prb_reserve(&e, prb, &r)) - return 0; - } - - /* fill message */ - memcpy(&r.text_buf[0], text, text_len); - if (trunc_msg_len) - memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); - r.info->text_len = text_len + trunc_msg_len; - r.info->facility = facility; - r.info->level = level & 7; - r.info->flags = flags & 0x1f; - if (ts_nsec > 0) - r.info->ts_nsec = ts_nsec; - else - r.info->ts_nsec = local_clock(); - r.info->caller_id = caller_id; - if (dev_info) - memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); - - /* A message without a trailing newline can be continued. */ - if (!(flags & LOG_NEWLINE)) - prb_commit(&e); - else - prb_final_commit(&e); - - return (text_len + trunc_msg_len); -} - int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); static int syslog_action_restricted(int type) @ kernel/printk/printk.c:610 @ static ssize_t msg_print_ext_body(char *buf, size_t size, /* /dev/kmsg - userspace message inject/listen interface */ struct devkmsg_user { - u64 seq; + atomic64_t seq; struct ratelimit_state rs; struct mutex lock; char buf[CONSOLE_EXT_LOG_MAX]; @ kernel/printk/printk.c:711 @ static ssize_t devkmsg_read(struct file *file, char __user *buf, if (ret) return ret; - logbuf_lock_irq(); - if (!prb_read_valid(prb, user->seq, r)) { + if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) { if (file->f_flags & O_NONBLOCK) { ret = -EAGAIN; - logbuf_unlock_irq(); goto out; } - logbuf_unlock_irq(); ret = wait_event_interruptible(log_wait, - prb_read_valid(prb, user->seq, r)); + prb_read_valid(prb, atomic64_read(&user->seq), r)); if (ret) goto out; - logbuf_lock_irq(); } - if (r->info->seq != user->seq) { + if (r->info->seq != atomic64_read(&user->seq)) { /* our last seen message is gone, return error and reset */ - user->seq = r->info->seq; + atomic64_set(&user->seq, r->info->seq); ret = -EPIPE; - logbuf_unlock_irq(); goto out; } @ kernel/printk/printk.c:735 @ static ssize_t devkmsg_read(struct file *file, char __user *buf, &r->text_buf[0], r->info->text_len, &r->info->dev_info); - user->seq = r->info->seq + 1; - logbuf_unlock_irq(); + atomic64_set(&user->seq, r->info->seq + 1); if (len > count) { ret = -EINVAL; @ kernel/printk/printk.c:770 @ static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) if (offset) return -ESPIPE; - logbuf_lock_irq(); switch (whence) { case SEEK_SET: /* the first record */ - user->seq = prb_first_valid_seq(prb); + atomic64_set(&user->seq, prb_first_valid_seq(prb)); break; case SEEK_DATA: /* @ kernel/printk/printk.c:781 @ static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) * like issued by 'dmesg -c'. Reading /dev/kmsg itself * changes no global state, and does not clear anything. */ - user->seq = clear_seq; + atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); break; case SEEK_END: /* after the last record */ - user->seq = prb_next_seq(prb); + atomic64_set(&user->seq, prb_next_seq(prb)); break; default: ret = -EINVAL; } - logbuf_unlock_irq(); return ret; } @ kernel/printk/printk.c:804 @ static __poll_t devkmsg_poll(struct file *file, poll_table *wait) poll_wait(file, &log_wait, wait); - logbuf_lock_irq(); - if (prb_read_valid_info(prb, user->seq, &info, NULL)) { + if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { /* return error when data has vanished underneath us */ - if (info.seq != user->seq) + if (info.seq != atomic64_read(&user->seq)) ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; else ret = EPOLLIN|EPOLLRDNORM; } - logbuf_unlock_irq(); return ret; } @ kernel/printk/printk.c:843 @ static int devkmsg_open(struct inode *inode, struct file *file) prb_rec_init_rd(&user->record, &user->info, &user->text_buf[0], sizeof(user->text_buf)); - logbuf_lock_irq(); - user->seq = prb_first_valid_seq(prb); - logbuf_unlock_irq(); + atomic64_set(&user->seq, prb_first_valid_seq(prb)); file->private_data = user; return 0; @ kernel/printk/printk.c:935 @ void log_buf_vmcoreinfo_setup(void) VMCOREINFO_SIZE(atomic_long_t); VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); + + VMCOREINFO_STRUCT_SIZE(latched_seq); + VMCOREINFO_OFFSET(latched_seq, val); } #endif @ kernel/printk/printk.c:1009 @ static inline void log_buf_add_cpu(void) {} static void __init set_percpu_data_ready(void) { - printk_safe_init(); - /* Make sure we set this flag only after printk_safe() init is done */ - barrier(); __printk_percpu_data_ready = true; } @ kernel/printk/printk.c:1048 @ void __init setup_log_buf(int early) struct printk_record r; size_t new_descs_size; size_t new_infos_size; - unsigned long flags; char *new_log_buf; unsigned int free; u64 seq; @ kernel/printk/printk.c:1105 @ void __init setup_log_buf(int early) new_descs, ilog2(new_descs_count), new_infos); - logbuf_lock_irqsave(flags); - log_buf_len = new_log_buf_len; log_buf = new_log_buf; new_log_buf_len = 0; @ kernel/printk/printk.c:1120 @ void __init setup_log_buf(int early) */ prb = &printk_rb_dynamic; - logbuf_unlock_irqrestore(flags); - if (seq != prb_next_seq(&printk_rb_static)) { pr_err("dropped %llu messages\n", prb_next_seq(&printk_rb_static) - seq); @ kernel/printk/printk.c:1396 @ static size_t get_record_print_text_size(struct printk_info *info, return ((prefix_len * line_count) + info->text_len + 1); } +/* + * Beginning with @start_seq, find the first record where it and all following + * records up to (but not including) @max_seq fit into @size. + * + * @max_seq is simply an upper bound and does not need to exist. If the caller + * does not require an upper bound, -1 can be used for @max_seq. + */ +static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, + bool syslog, bool time) +{ + struct printk_info info; + unsigned int line_count; + size_t len = 0; + u64 seq; + + /* Determine the size of the records up to @max_seq. */ + prb_for_each_info(start_seq, prb, seq, &info, &line_count) { + if (info.seq >= max_seq) + break; + len += get_record_print_text_size(&info, line_count, syslog, time); + } + + /* + * Adjust the upper bound for the next loop to avoid subtracting + * lengths that were never added. + */ + if (seq < max_seq) + max_seq = seq; + + /* + * Move first record forward until length fits into the buffer. Ignore + * newest messages that were not counted in the above cycle. Messages + * might appear and get lost in the meantime. This is a best effort + * that prevents an infinite loop that could occur with a retry. + */ + prb_for_each_info(start_seq, prb, seq, &info, &line_count) { + if (len <= size || info.seq >= max_seq) + break; + len -= get_record_print_text_size(&info, line_count, syslog, time); + } + + return seq; +} + static int syslog_print(char __user *buf, int size) { struct printk_info info; @ kernel/printk/printk.c:1447 @ static int syslog_print(char __user *buf, int size) char *text; int len = 0; - text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); + text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL); if (!text) return -ENOMEM; - prb_rec_init_rd(&r, &info, text, LOG_LINE_MAX + PREFIX_MAX); + prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX); while (size > 0) { size_t n; size_t skip; - logbuf_lock_irq(); + spin_lock_irq(&syslog_lock); if (!prb_read_valid(prb, syslog_seq, &r)) { - logbuf_unlock_irq(); + spin_unlock_irq(&syslog_lock); break; } if (r.info->seq != syslog_seq) { @ kernel/printk/printk.c:1488 @ static int syslog_print(char __user *buf, int size) syslog_partial += n; } else n = 0; - logbuf_unlock_irq(); + spin_unlock_irq(&syslog_lock); if (!n) break; @ kernel/printk/printk.c:1511 @ static int syslog_print(char __user *buf, int size) static int syslog_print_all(char __user *buf, int size, bool clear) { struct printk_info info; - unsigned int line_count; struct printk_record r; char *text; int len = 0; u64 seq; bool time; - text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); + text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL); if (!text) return -ENOMEM; time = printk_time; - logbuf_lock_irq(); /* * Find first record that fits, including all following records, * into the user-provided buffer for this dump. */ - prb_for_each_info(clear_seq, prb, seq, &info, &line_count) - len += get_record_print_text_size(&info, line_count, true, time); - - /* move first record forward until length fits into the buffer */ - prb_for_each_info(clear_seq, prb, seq, &info, &line_count) { - if (len <= size) - break; - len -= get_record_print_text_size(&info, line_count, true, time); - } + seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, + size, true, time); - prb_rec_init_rd(&r, &info, text, LOG_LINE_MAX + PREFIX_MAX); + prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX); len = 0; prb_for_each_record(seq, prb, seq, &r) { @ kernel/printk/printk.c:1542 @ static int syslog_print_all(char __user *buf, int size, bool clear) break; } - logbuf_unlock_irq(); if (copy_to_user(buf + len, text, textlen)) len = -EFAULT; else len += textlen; - logbuf_lock_irq(); if (len < 0) break; } - if (clear) - clear_seq = seq; - logbuf_unlock_irq(); + if (clear) { + spin_lock_irq(&syslog_lock); + latched_seq_write(&clear_seq, seq); + spin_unlock_irq(&syslog_lock); + } kfree(text); return len; @ kernel/printk/printk.c:1563 @ static int syslog_print_all(char __user *buf, int size, bool clear) static void syslog_clear(void) { - logbuf_lock_irq(); - clear_seq = prb_next_seq(prb); - logbuf_unlock_irq(); + spin_lock_irq(&syslog_lock); + latched_seq_write(&clear_seq, prb_next_seq(prb)); + spin_unlock_irq(&syslog_lock); +} + +/* Return a consistent copy of @syslog_seq. */ +static u64 read_syslog_seq_irq(void) +{ + u64 seq; + + spin_lock_irq(&syslog_lock); + seq = syslog_seq; + spin_unlock_irq(&syslog_lock); + + return seq; } int do_syslog(int type, char __user *buf, int len, int source) @ kernel/printk/printk.c:1603 @ int do_syslog(int type, char __user *buf, int len, int source) return 0; if (!access_ok(buf, len)) return -EFAULT; + error = wait_event_interruptible(log_wait, - prb_read_valid(prb, syslog_seq, NULL)); + prb_read_valid(prb, read_syslog_seq_irq(), NULL)); if (error) return error; error = syslog_print(buf, len); @ kernel/printk/printk.c:1653 @ int do_syslog(int type, char __user *buf, int len, int source) break; /* Number of chars in the log buffer */ case SYSLOG_ACTION_SIZE_UNREAD: - logbuf_lock_irq(); + spin_lock_irq(&syslog_lock); if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { /* No unread messages. */ - logbuf_unlock_irq(); + spin_unlock_irq(&syslog_lock); return 0; } if (info.seq != syslog_seq) { @ kernel/printk/printk.c:1684 @ int do_syslog(int type, char __user *buf, int len, int source) } error -= syslog_partial; } - logbuf_unlock_irq(); + spin_unlock_irq(&syslog_lock); break; /* Size of the log buffer */ case SYSLOG_ACTION_SIZE_BUFFER: @ kernel/printk/printk.c:1703 @ SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) return do_syslog(type, buf, len, SYSLOG_FROM_READER); } -/* - * Special console_lock variants that help to reduce the risk of soft-lockups. - * They allow to pass console_lock to another printk() call using a busy wait. - */ - -#ifdef CONFIG_LOCKDEP -static struct lockdep_map console_owner_dep_map = { - .name = "console_owner" -}; -#endif - -static DEFINE_RAW_SPINLOCK(console_owner_lock); -static struct task_struct *console_owner; -static bool console_waiter; +int printk_delay_msec __read_mostly; -/** - * console_lock_spinning_enable - mark beginning of code where another - * thread might safely busy wait - * - * This basically converts console_lock into a spinlock. This marks - * the section where the console_lock owner can not sleep, because - * there may be a waiter spinning (like a spinlock). Also it must be - * ready to hand over the lock at the end of the section. - */ -static void console_lock_spinning_enable(void) +static inline void printk_delay(int level) { - raw_spin_lock(&console_owner_lock); - console_owner = current; - raw_spin_unlock(&console_owner_lock); + boot_delay_msec(level); + + if (unlikely(printk_delay_msec)) { + int m = printk_delay_msec; - /* The waiter may spin on us after setting console_owner */ - spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); + while (m--) { + mdelay(1); + touch_nmi_watchdog(); + } + } } -/** - * console_lock_spinning_disable_and_check - mark end of code where another - * thread was able to busy wait and check if there is a waiter - * - * This is called at the end of the section where spinning is allowed. - * It has two functions. First, it is a signal that it is no longer - * safe to start busy waiting for the lock. Second, it checks if - * there is a busy waiter and passes the lock rights to her. - * - * Important: Callers lose the lock if there was a busy waiter. - * They must not touch items synchronized by console_lock - * in this case. - * - * Return: 1 if the lock rights were passed, 0 otherwise. - */ -static int console_lock_spinning_disable_and_check(void) +static bool kernel_sync_mode(void) { - int waiter; + return (oops_in_progress || sync_mode); +} - raw_spin_lock(&console_owner_lock); - waiter = READ_ONCE(console_waiter); - console_owner = NULL; - raw_spin_unlock(&console_owner_lock); +static bool console_can_sync(struct console *con) +{ + if (!(con->flags & CON_ENABLED)) + return false; + if (con->write_atomic && kernel_sync_mode()) + return true; + if (con->write_atomic && (con->flags & CON_HANDOVER) && !con->thread) + return true; + if (con->write && (con->flags & CON_BOOT) && !con->thread) + return true; + return false; +} - if (!waiter) { - spin_release(&console_owner_dep_map, _THIS_IP_); - return 0; - } +static bool call_sync_console_driver(struct console *con, const char *text, size_t text_len) +{ + if (!(con->flags & CON_ENABLED)) + return false; + if (con->write_atomic && kernel_sync_mode()) + con->write_atomic(con, text, text_len); + else if (con->write_atomic && (con->flags & CON_HANDOVER) && !con->thread) + con->write_atomic(con, text, text_len); + else if (con->write && (con->flags & CON_BOOT) && !con->thread) + con->write(con, text, text_len); + else + return false; - /* The waiter is now free to continue */ - WRITE_ONCE(console_waiter, false); + return true; +} - spin_release(&console_owner_dep_map, _THIS_IP_); +static bool have_atomic_console(void) +{ + struct console *con; - /* - * Hand off console_lock to waiter. The waiter will perform - * the up(). After this, the waiter is the console_lock owner. - */ - mutex_release(&console_lock_dep_map, _THIS_IP_); - return 1; + for_each_console(con) { + if (!(con->flags & CON_ENABLED)) + continue; + if (con->write_atomic) + return true; + } + return false; } -/** - * console_trylock_spinning - try to get console_lock by busy waiting - * - * This allows to busy wait for the console_lock when the current - * owner is running in specially marked sections. It means that - * the current owner is running and cannot reschedule until it - * is ready to lose the lock. - * - * Return: 1 if we got the lock, 0 othrewise - */ -static int console_trylock_spinning(void) +static bool print_sync(struct console *con, u64 *seq) { - struct task_struct *owner = NULL; - bool waiter; - bool spin = false; - unsigned long flags; + struct printk_info info; + struct printk_record r; + size_t text_len; - if (console_trylock()) - return 1; + prb_rec_init_rd(&r, &info, &con->sync_buf[0], sizeof(con->sync_buf)); - printk_safe_enter_irqsave(flags); + if (!prb_read_valid(prb, *seq, &r)) + return false; - raw_spin_lock(&console_owner_lock); - owner = READ_ONCE(console_owner); - waiter = READ_ONCE(console_waiter); - if (!waiter && owner && owner != current) { - WRITE_ONCE(console_waiter, true); - spin = true; - } - raw_spin_unlock(&console_owner_lock); + text_len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time); - /* - * If there is an active printk() writing to the - * consoles, instead of having it write our data too, - * see if we can offload that load from the active - * printer, and do some printing ourselves. - * Go into a spin only if there isn't already a waiter - * spinning, and there is an active printer, and - * that active printer isn't us (recursive printk?). - */ - if (!spin) { - printk_safe_exit_irqrestore(flags); - return 0; - } + if (!call_sync_console_driver(con, &con->sync_buf[0], text_len)) + return false; - /* We spin waiting for the owner to release us */ - spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); - /* Owner will clear console_waiter on hand off */ - while (READ_ONCE(console_waiter)) - cpu_relax(); - spin_release(&console_owner_dep_map, _THIS_IP_); + *seq = r.info->seq; - printk_safe_exit_irqrestore(flags); - /* - * The owner passed the console lock to us. - * Since we did not spin on console lock, annotate - * this as a trylock. Otherwise lockdep will - * complain. - */ - mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); + touch_softlockup_watchdog_sync(); + clocksource_touch_watchdog(); + rcu_cpu_stall_reset(); + touch_nmi_watchdog(); - return 1; + if (text_len) + printk_delay(r.info->level); + + return true; } -/* - * Call the console drivers, asking them to write out - * log_buf[start] to log_buf[end - 1]. - * The console_lock must be held. - */ -static void call_console_drivers(const char *ext_text, size_t ext_len, - const char *text, size_t len) +static void print_sync_until(struct console *con, u64 seq) { - static char dropped_text[64]; - size_t dropped_len = 0; - struct console *con; + unsigned int flags; + u64 printk_seq; + + console_atomic_lock(&flags); + for (;;) { + printk_seq = atomic64_read(&con->printk_seq); + if (printk_seq >= seq) + break; + if (!print_sync(con, &printk_seq)) + break; + atomic64_set(&con->printk_seq, printk_seq + 1); + } + console_atomic_unlock(flags); +} - trace_console_rcuidle(text, len); +#ifdef CONFIG_PRINTK_NMI +#define NUM_RECURSION_CTX 2 +#else +#define NUM_RECURSION_CTX 1 +#endif - if (!console_drivers) - return; +struct printk_recursion { + char count[NUM_RECURSION_CTX]; +}; - if (console_dropped) { - dropped_len = snprintf(dropped_text, sizeof(dropped_text), - "** %lu printk messages dropped **\n", - console_dropped); - console_dropped = 0; - } +static DEFINE_PER_CPU(struct printk_recursion, percpu_printk_recursion); +static char printk_recursion_count[NUM_RECURSION_CTX]; - for_each_console(con) { - if (exclusive_console && con != exclusive_console) - continue; - if (!(con->flags & CON_ENABLED)) - continue; - if (!con->write) - continue; - if (!cpu_online(smp_processor_id()) && - !(con->flags & CON_ANYTIME)) - continue; - if (con->flags & CON_EXTENDED) - con->write(con, ext_text, ext_len); - else { - if (dropped_len) - con->write(con, dropped_text, dropped_len); - con->write(con, text, len); - } +static char *printk_recursion_counter(void) +{ + struct printk_recursion *rec; + char *count; + + if (!printk_percpu_data_ready()) { + count = &printk_recursion_count[0]; + } else { + rec = this_cpu_ptr(&percpu_printk_recursion); + + count = &rec->count[0]; } -} -int printk_delay_msec __read_mostly; +#ifdef CONFIG_PRINTK_NMI + if (in_nmi()) + count++; +#endif + + return count; +} -static inline void printk_delay(void) +static bool printk_enter_irqsave(unsigned long *flags) { - if (unlikely(printk_delay_msec)) { - int m = printk_delay_msec; + char *count; - while (m--) { - mdelay(1); - touch_nmi_watchdog(); - } + local_irq_save(*flags); + count = printk_recursion_counter(); + /* Only 1 level of recursion allowed. */ + if (*count > 1) { + local_irq_restore(*flags); + return false; } + (*count)++; + + return true; +} + +static void printk_exit_irqrestore(unsigned long flags) +{ + char *count; + + count = printk_recursion_counter(); + (*count)--; + local_irq_restore(flags); } static inline u32 printk_caller_id(void) @ kernel/printk/printk.c:1877 @ static inline u32 printk_caller_id(void) 0x80000000 + raw_smp_processor_id(); } -static size_t log_output(int facility, int level, enum log_flags lflags, - const struct dev_printk_info *dev_info, - char *text, size_t text_len) +/** + * parse_prefix - Parse level and control flags. + * + * @text: The terminated text message. + * @level: A pointer to the current level value, will be updated. + * @lflags: A pointer to the current log flags, will be updated. + * + * @level may be NULL if the caller is not interested in the parsed value. + * Otherwise the variable pointed to by @level must be set to + * LOGLEVEL_DEFAULT in order to be updated with the parsed value. + * + * @lflags may be NULL if the caller is not interested in the parsed value. + * Otherwise the variable pointed to by @lflags will be OR'd with the parsed + * value. + * + * Return: The length of the parsed level and control flags. + */ +static u16 parse_prefix(char *text, int *level, enum log_flags *lflags) { - const u32 caller_id = printk_caller_id(); + u16 prefix_len = 0; + int kern_level; - if (lflags & LOG_CONT) { - struct prb_reserved_entry e; - struct printk_record r; + while (*text) { + kern_level = printk_get_level(text); + if (!kern_level) + break; - prb_rec_init_wr(&r, text_len); - if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) { - memcpy(&r.text_buf[r.info->text_len], text, text_len); - r.info->text_len += text_len; - if (lflags & LOG_NEWLINE) { - r.info->flags |= LOG_NEWLINE; - prb_final_commit(&e); - } else { - prb_commit(&e); - } - return text_len; + switch (kern_level) { + case '0' ... '7': + if (level && *level == LOGLEVEL_DEFAULT) + *level = kern_level - '0'; + break; + case 'c': /* KERN_CONT */ + if (lflags) + *lflags |= LOG_CONT; } + + prefix_len += 2; + text += 2; } - /* Store it in the record log */ - return log_store(caller_id, facility, level, lflags, 0, - dev_info, text, text_len); + return prefix_len; } -/* Must be called under logbuf_lock. */ -int vprintk_store(int facility, int level, - const struct dev_printk_info *dev_info, - const char *fmt, va_list args) +static u16 printk_sprint(char *text, u16 size, int facility, enum log_flags *lflags, + const char *fmt, va_list args) { - static char textbuf[LOG_LINE_MAX]; - char *text = textbuf; - size_t text_len; - enum log_flags lflags = 0; + u16 text_len; - /* - * The printf needs to come first; we need the syslog - * prefix which might be passed-in as a parameter. - */ - text_len = vscnprintf(text, sizeof(textbuf), fmt, args); + text_len = vscnprintf(text, size, fmt, args); - /* mark and strip a trailing newline */ - if (text_len && text[text_len-1] == '\n') { + /* Mark and strip a trailing newline. */ + if (text_len && text[text_len - 1] == '\n') { text_len--; - lflags |= LOG_NEWLINE; + *lflags |= LOG_NEWLINE; } - /* strip kernel syslog prefix and extract log level or control flags */ + /* Strip log level and control flags. */ if (facility == 0) { - int kern_level; - - while ((kern_level = printk_get_level(text)) != 0) { - switch (kern_level) { - case '0' ... '7': - if (level == LOGLEVEL_DEFAULT) - level = kern_level - '0'; - break; - case 'c': /* KERN_CONT */ - lflags |= LOG_CONT; - } + u16 prefix_len; - text_len -= 2; - text += 2; + prefix_len = parse_prefix(text, NULL, NULL); + if (prefix_len) { + text_len -= prefix_len; + memmove(text, text + prefix_len, text_len); } } - if (level == LOGLEVEL_DEFAULT) - level = default_message_loglevel; - - if (dev_info) - lflags |= LOG_NEWLINE; - - return log_output(facility, level, lflags, dev_info, text, text_len); + return text_len; } -asmlinkage int vprintk_emit(int facility, int level, - const struct dev_printk_info *dev_info, - const char *fmt, va_list args) +__printf(4, 0) +static int vprintk_store(int facility, int level, + const struct dev_printk_info *dev_info, + const char *fmt, va_list args) { - int printed_len; - bool in_sched = false; - unsigned long flags; - - /* Suppress unimportant messages after panic happens */ - if (unlikely(suppress_printk)) + const u32 caller_id = printk_caller_id(); + struct prb_reserved_entry e; + enum log_flags lflags = 0; + bool final_commit = false; + struct printk_record r; + unsigned long irqflags; + u16 trunc_msg_len = 0; + char prefix_buf[8]; + u16 reserve_size; + va_list args2; + u16 text_len; + int ret = 0; + u64 ts_nsec; + u64 seq; + + /* + * Since the duration of printk() can vary depending on the message + * and state of the ringbuffer, grab the timestamp now so that it is + * close to the call of printk(). This provides a more deterministic + * timestamp with respect to the caller. + */ + ts_nsec = local_clock(); + + if (!printk_enter_irqsave(&irqflags)) return 0; - if (level == LOGLEVEL_SCHED) { - level = LOGLEVEL_DEFAULT; - in_sched = true; + /* + * The sprintf needs to come first since the syslog prefix might be + * passed in as a parameter. An extra byte must be reserved so that + * later the vscnprintf() into the reserved buffer has room for the + * terminating '\0', which is not counted by vsnprintf(). + */ + va_copy(args2, args); + reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; + va_end(args2); + + if (reserve_size > LOG_LINE_MAX) + reserve_size = LOG_LINE_MAX; + + /* Extract log level or control flags. */ + if (facility == 0) + parse_prefix(&prefix_buf[0], &level, &lflags); + + if (level == LOGLEVEL_DEFAULT) + level = default_message_loglevel; + + if (dev_info) + lflags |= LOG_NEWLINE; + + if (lflags & LOG_CONT) { + prb_rec_init_wr(&r, reserve_size); + if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) { + seq = r.info->seq; + text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, + facility, &lflags, fmt, args); + r.info->text_len += text_len; + + if (lflags & LOG_NEWLINE) { + r.info->flags |= LOG_NEWLINE; + prb_final_commit(&e); + final_commit = true; + } else { + prb_commit(&e); + } + + ret = text_len; + goto out; + } } - boot_delay_msec(level); - printk_delay(); + /* + * Explicitly initialize the record before every prb_reserve() call. + * prb_reserve_in_last() and prb_reserve() purposely invalidate the + * structure when they fail. + */ + prb_rec_init_wr(&r, reserve_size); + if (!prb_reserve(&e, prb, &r)) { + /* truncate the message if it is too long for empty buffer */ + truncate_msg(&reserve_size, &trunc_msg_len); - /* This stops the holder of console_sem just where we want him */ - logbuf_lock_irqsave(flags); - printed_len = vprintk_store(facility, level, dev_info, fmt, args); - logbuf_unlock_irqrestore(flags); + prb_rec_init_wr(&r, reserve_size + trunc_msg_len); + if (!prb_reserve(&e, prb, &r)) + goto out; + } - /* If called from the scheduler, we can not call up(). */ - if (!in_sched) { - /* - * Disable preemption to avoid being preempted while holding - * console_sem which would prevent anyone from printing to - * console - */ - preempt_disable(); - /* - * Try to acquire and then immediately release the console - * semaphore. The release will print out buffers and wake up - * /dev/kmsg and syslog() users. - */ - if (console_trylock_spinning()) - console_unlock(); - preempt_enable(); + seq = r.info->seq; + + /* fill message */ + text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &lflags, fmt, args); + if (trunc_msg_len) + memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); + r.info->text_len = text_len + trunc_msg_len; + r.info->facility = facility; + r.info->level = level & 7; + r.info->flags = lflags & 0x1f; + r.info->ts_nsec = ts_nsec; + r.info->caller_id = caller_id; + if (dev_info) + memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); + + /* A message without a trailing newline can be continued. */ + if (!(lflags & LOG_NEWLINE)) { + prb_commit(&e); + } else { + prb_final_commit(&e); + final_commit = true; } + ret = text_len + trunc_msg_len; +out: + /* only the kernel may perform synchronous printing */ + if (facility == 0 && final_commit) { + struct console *con; + + for_each_console(con) { + if (console_can_sync(con)) + print_sync_until(con, seq + 1); + } + } + + printk_exit_irqrestore(irqflags); + return ret; +} + +asmlinkage int vprintk_emit(int facility, int level, + const struct dev_printk_info *dev_info, + const char *fmt, va_list args) +{ + int printed_len; + + /* Suppress unimportant messages after panic happens */ + if (unlikely(suppress_printk)) + return 0; + + if (level == LOGLEVEL_SCHED) + level = LOGLEVEL_DEFAULT; + + printed_len = vprintk_store(facility, level, dev_info, fmt, args); + wake_up_klogd(); return printed_len; } EXPORT_SYMBOL(vprintk_emit); -asmlinkage int vprintk(const char *fmt, va_list args) +__printf(1, 0) +static int vprintk_default(const char *fmt, va_list args) { - return vprintk_func(fmt, args); + return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); } -EXPORT_SYMBOL(vprintk); -int vprintk_default(const char *fmt, va_list args) +__printf(1, 0) +static int vprintk_func(const char *fmt, va_list args) { - return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); +#ifdef CONFIG_KGDB_KDB + /* Allow to pass printk() to kdb but avoid a recursion. */ + if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) + return vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); +#endif + return vprintk_default(fmt, args); +} + +asmlinkage int vprintk(const char *fmt, va_list args) +{ + return vprintk_func(fmt, args); } -EXPORT_SYMBOL_GPL(vprintk_default); +EXPORT_SYMBOL(vprintk); /** * printk - print a kernel message @ kernel/printk/printk.c:2154 @ asmlinkage __visible int printk(const char *fmt, ...) } EXPORT_SYMBOL(printk); -#else /* CONFIG_PRINTK */ +static int printk_kthread_func(void *data) +{ + struct console *con = data; + unsigned long dropped = 0; + char *dropped_text = NULL; + struct printk_info info; + struct printk_record r; + char *ext_text = NULL; + size_t dropped_len; + int ret = -ENOMEM; + char *text = NULL; + char *write_text; + u64 printk_seq; + size_t len; + int error; + u64 seq; -#define LOG_LINE_MAX 0 -#define PREFIX_MAX 0 -#define printk_time false + if (con->flags & CON_EXTENDED) { + ext_text = kmalloc(CONSOLE_EXT_LOG_MAX, GFP_KERNEL); + if (!ext_text) + goto out; + } + text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); + dropped_text = kmalloc(64, GFP_KERNEL); + if (!text || !dropped_text) + goto out; -#define prb_read_valid(rb, seq, r) false -#define prb_first_valid_seq(rb) 0 + if (con->flags & CON_EXTENDED) + write_text = ext_text; + else + write_text = text; -static u64 syslog_seq; -static u64 console_seq; -static u64 exclusive_console_stop_seq; -static unsigned long console_dropped; + seq = atomic64_read(&con->printk_seq); + + prb_rec_init_rd(&r, &info, text, LOG_LINE_MAX + PREFIX_MAX); + + for (;;) { + error = wait_event_interruptible(log_wait, + prb_read_valid(prb, seq, &r) || kthread_should_stop()); -static size_t record_print_text(const struct printk_record *r, - bool syslog, bool time) + if (kthread_should_stop()) + break; + + if (error) + continue; + + if (seq != r.info->seq) { + dropped += r.info->seq - seq; + seq = r.info->seq; + } + + seq++; + + if (!(con->flags & CON_ENABLED)) + continue; + + if (suppress_message_printing(r.info->level)) + continue; + + if (con->flags & CON_EXTENDED) { + len = info_print_ext_header(ext_text, + CONSOLE_EXT_LOG_MAX, + r.info); + len += msg_print_ext_body(ext_text + len, + CONSOLE_EXT_LOG_MAX - len, + &r.text_buf[0], r.info->text_len, + &r.info->dev_info); + } else { + len = record_print_text(&r, + console_msg_format & MSG_FORMAT_SYSLOG, + printk_time); + } + + printk_seq = atomic64_read(&con->printk_seq); + + console_lock(); + console_may_schedule = 0; + + if (kernel_sync_mode() && con->write_atomic) { + console_unlock(); + break; + } + + if (!(con->flags & CON_EXTENDED) && dropped) { + dropped_len = snprintf(dropped_text, 64, + "** %lu printk messages dropped **\n", + dropped); + dropped = 0; + + con->write(con, dropped_text, dropped_len); + printk_delay(r.info->level); + } + + con->write(con, write_text, len); + if (len) + printk_delay(r.info->level); + + atomic64_cmpxchg_relaxed(&con->printk_seq, printk_seq, seq); + + console_unlock(); + } +out: + kfree(dropped_text); + kfree(text); + kfree(ext_text); + pr_info("%sconsole [%s%d]: printing thread stopped\n", + (con->flags & CON_BOOT) ? "boot" : "", + con->name, con->index); + return ret; +} + +/* Must be called within console_lock(). */ +static void start_printk_kthread(struct console *con) { - return 0; + con->thread = kthread_run(printk_kthread_func, con, + "pr/%s%d", con->name, con->index); + if (IS_ERR(con->thread)) { + pr_err("%sconsole [%s%d]: unable to start printing thread\n", + (con->flags & CON_BOOT) ? "boot" : "", + con->name, con->index); + return; + } + pr_info("%sconsole [%s%d]: printing thread started\n", + (con->flags & CON_BOOT) ? "boot" : "", + con->name, con->index); } -static ssize_t info_print_ext_header(char *buf, size_t size, - struct printk_info *info) + +/* protected by console_lock */ +static bool kthreads_started; + +/* Must be called within console_lock(). */ +static void console_try_thread(struct console *con) { - return 0; + if (kthreads_started) { + start_printk_kthread(con); + return; + } + + /* + * The printing threads have not been started yet. If this console + * can print synchronously, print all unprinted messages. + */ + if (console_can_sync(con)) + print_sync_until(con, prb_next_seq(prb)); } -static ssize_t msg_print_ext_body(char *buf, size_t size, - char *text, size_t text_len, - struct dev_printk_info *dev_info) { return 0; } -static void console_lock_spinning_enable(void) { } -static int console_lock_spinning_disable_and_check(void) { return 0; } -static void call_console_drivers(const char *ext_text, size_t ext_len, - const char *text, size_t len) {} -static bool suppress_message_printing(int level) { return false; } + +#else /* CONFIG_PRINTK */ + +#define prb_first_valid_seq(rb) 0 +#define prb_next_seq(rb) 0 + +#define console_try_thread(con) #endif /* CONFIG_PRINTK */ @ kernel/printk/printk.c:2550 @ int is_console_locked(void) } EXPORT_SYMBOL(is_console_locked); -/* - * Check if we have any console that is capable of printing while cpu is - * booting or shutting down. Requires console_sem. - */ -static int have_callable_console(void) -{ - struct console *con; - - for_each_console(con) - if ((con->flags & CON_ENABLED) && - (con->flags & CON_ANYTIME)) - return 1; - - return 0; -} - -/* - * Can we actually use the console at this time on this cpu? - * - * Console drivers may assume that per-cpu resources have been allocated. So - * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't - * call them until this CPU is officially up. - */ -static inline int can_use_console(void) -{ - return cpu_online(raw_smp_processor_id()) || have_callable_console(); -} - /** * console_unlock - unlock the console system * @ kernel/printk/printk.c:2566 @ static inline int can_use_console(void) */ void console_unlock(void) { - static char ext_text[CONSOLE_EXT_LOG_MAX]; - static char text[LOG_LINE_MAX + PREFIX_MAX]; - unsigned long flags; - bool do_cond_resched, retry; - struct printk_info info; - struct printk_record r; - if (console_suspended) { up_console_sem(); return; } - prb_rec_init_rd(&r, &info, text, sizeof(text)); - - /* - * Console drivers are called with interrupts disabled, so - * @console_may_schedule should be cleared before; however, we may - * end up dumping a lot of lines, for example, if called from - * console registration path, and should invoke cond_resched() - * between lines if allowable. Not doing so can cause a very long - * scheduling stall on a slow console leading to RCU stall and - * softlockup warnings which exacerbate the issue with more - * messages practically incapacitating the system. - * - * console_trylock() is not able to detect the preemptive - * context reliably. Therefore the value must be stored before - * and cleared after the "again" goto label. - */ - do_cond_resched = console_may_schedule; -again: - console_may_schedule = 0; - - /* - * We released the console_sem lock, so we need to recheck if - * cpu is online and (if not) is there at least one CON_ANYTIME - * console. - */ - if (!can_use_console()) { - console_locked = 0; - up_console_sem(); - return; - } - - for (;;) { - size_t ext_len = 0; - size_t len; - - printk_safe_enter_irqsave(flags); - raw_spin_lock(&logbuf_lock); -skip: - if (!prb_read_valid(prb, console_seq, &r)) - break; - - if (console_seq != r.info->seq) { - console_dropped += r.info->seq - console_seq; - console_seq = r.info->seq; - } - - if (suppress_message_printing(r.info->level)) { - /* - * Skip record we have buffered and already printed - * directly to the console when we received it, and - * record that has level above the console loglevel. - */ - console_seq++; - goto skip; - } - - /* Output to all consoles once old messages replayed. */ - if (unlikely(exclusive_console && - console_seq >= exclusive_console_stop_seq)) { - exclusive_console = NULL; - } - - /* - * Handle extended console text first because later - * record_print_text() will modify the record buffer in-place. - */ - if (nr_ext_console_drivers) { - ext_len = info_print_ext_header(ext_text, - sizeof(ext_text), - r.info); - ext_len += msg_print_ext_body(ext_text + ext_len, - sizeof(ext_text) - ext_len, - &r.text_buf[0], - r.info->text_len, - &r.info->dev_info); - } - len = record_print_text(&r, - console_msg_format & MSG_FORMAT_SYSLOG, - printk_time); - console_seq++; - raw_spin_unlock(&logbuf_lock); - - /* - * While actively printing out messages, if another printk() - * were to occur on another CPU, it may wait for this one to - * finish. This task can not be preempted if there is a - * waiter waiting to take over. - */ - console_lock_spinning_enable(); - - stop_critical_timings(); /* don't trace print latency */ - call_console_drivers(ext_text, ext_len, text, len); - start_critical_timings(); - - if (console_lock_spinning_disable_and_check()) { - printk_safe_exit_irqrestore(flags); - return; - } - - printk_safe_exit_irqrestore(flags); - - if (do_cond_resched) - cond_resched(); - } - console_locked = 0; - raw_spin_unlock(&logbuf_lock); - up_console_sem(); - - /* - * Someone could have filled up the buffer again, so re-check if there's - * something to flush. In case we cannot trylock the console_sem again, - * there's a new owner and the console_unlock() from them will do the - * flush, no worries. - */ - raw_spin_lock(&logbuf_lock); - retry = prb_read_valid(prb, console_seq, NULL); - raw_spin_unlock(&logbuf_lock); - printk_safe_exit_irqrestore(flags); - - if (retry && console_trylock()) - goto again; } EXPORT_SYMBOL(console_unlock); @ kernel/printk/printk.c:2623 @ void console_unblank(void) */ void console_flush_on_panic(enum con_flush_mode mode) { - /* - * If someone else is holding the console lock, trylock will fail - * and may_schedule may be set. Ignore and proceed to unlock so - * that messages are flushed out. As this can be called from any - * context and we don't want to get preempted while flushing, - * ensure may_schedule is cleared. - */ - console_trylock(); + struct console *c; + u64 seq; + + if (!console_trylock()) + return; + console_may_schedule = 0; if (mode == CONSOLE_REPLAY_ALL) { - unsigned long flags; - - logbuf_lock_irqsave(flags); - console_seq = prb_first_valid_seq(prb); - logbuf_unlock_irqrestore(flags); + seq = prb_first_valid_seq(prb); + for_each_console(c) + atomic64_set(&c->printk_seq, seq); } + console_unlock(); } @ kernel/printk/printk.c:2771 @ static int try_enable_new_console(struct console *newcon, bool user_specified) */ void register_console(struct console *newcon) { - unsigned long flags; struct console *bcon = NULL; int err; @ kernel/printk/printk.c:2794 @ void register_console(struct console *newcon) } } + newcon->thread = NULL; + if (console_drivers && console_drivers->flags & CON_BOOT) bcon = console_drivers; @ kernel/printk/printk.c:2837 @ void register_console(struct console *newcon) * the real console are the same physical device, it's annoying to * see the beginning boot messages twice */ - if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) + if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { newcon->flags &= ~CON_PRINTBUFFER; + newcon->flags |= CON_HANDOVER; + } /* * Put this console in the list - keep the @ kernel/printk/printk.c:2862 @ void register_console(struct console *newcon) if (newcon->flags & CON_EXTENDED) nr_ext_console_drivers++; - if (newcon->flags & CON_PRINTBUFFER) { - /* - * console_unlock(); will print out the buffered messages - * for us. - */ - logbuf_lock_irqsave(flags); - /* - * We're about to replay the log buffer. Only do this to the - * just-registered console to avoid excessive message spam to - * the already-registered consoles. - * - * Set exclusive_console with disabled interrupts to reduce - * race window with eventual console_flush_on_panic() that - * ignores console_lock. - */ - exclusive_console = newcon; - exclusive_console_stop_seq = console_seq; - console_seq = syslog_seq; - logbuf_unlock_irqrestore(flags); - } + if (newcon->flags & CON_PRINTBUFFER) + atomic64_set(&newcon->printk_seq, 0); + else + atomic64_set(&newcon->printk_seq, prb_next_seq(prb)); + + console_try_thread(newcon); console_unlock(); console_sysfs_notify(); @ kernel/printk/printk.c:2941 @ int unregister_console(struct console *console) console_unlock(); console_sysfs_notify(); + if (console->thread && !IS_ERR(console->thread)) + kthread_stop(console->thread); + if (console->exit) res = console->exit(console); @ kernel/printk/printk.c:3026 @ static int __init printk_late_init(void) unregister_console(con); } } + +#ifdef CONFIG_PRINTK + console_lock(); + for_each_console(con) + start_printk_kthread(con); + kthreads_started = true; + console_unlock(); +#endif + ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, console_cpu_notify); WARN_ON(ret < 0); @ kernel/printk/printk.c:3050 @ late_initcall(printk_late_init); * Delayed printk version, for scheduler-internal messages: */ #define PRINTK_PENDING_WAKEUP 0x01 -#define PRINTK_PENDING_OUTPUT 0x02 static DEFINE_PER_CPU(int, printk_pending); @ kernel/printk/printk.c:3057 @ static void wake_up_klogd_work_func(struct irq_work *irq_work) { int pending = __this_cpu_xchg(printk_pending, 0); - if (pending & PRINTK_PENDING_OUTPUT) { - /* If trylock fails, someone else is doing the printing */ - if (console_trylock()) - console_unlock(); - } - if (pending & PRINTK_PENDING_WAKEUP) - wake_up_interruptible(&log_wait); + wake_up_interruptible_all(&log_wait); } static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { @ kernel/printk/printk.c:3079 @ void wake_up_klogd(void) preempt_enable(); } -void defer_console_output(void) -{ - if (!printk_percpu_data_ready()) - return; - - preempt_disable(); - __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); - irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); - preempt_enable(); -} - -int vprintk_deferred(const char *fmt, va_list args) +__printf(1, 0) +static int vprintk_deferred(const char *fmt, va_list args) { - int r; - - r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); - defer_console_output(); - - return r; + return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); } int printk_deferred(const char *fmt, ...) @ kernel/printk/printk.c:3221 @ EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); */ void kmsg_dump(enum kmsg_dump_reason reason) { + struct kmsg_dumper_iter iter; struct kmsg_dumper *dumper; - unsigned long flags; + + if (!oops_in_progress) { + /* + * If atomic consoles are available, activate kernel sync mode + * to make sure any final messages are visible. The trailing + * printk message is important to flush any pending messages. + */ + if (have_atomic_console()) { + sync_mode = true; + pr_info("enabled sync mode\n"); + } + + /* + * Give the printing threads time to flush, allowing up to + * 1s of no printing forward progress before giving up. + */ + pr_flush(1000, true); + } rcu_read_lock(); list_for_each_entry_rcu(dumper, &dump_list, list) { @ kernel/printk/printk.c:3258 @ void kmsg_dump(enum kmsg_dump_reason reason) continue; /* initialize iterator with data about the stored records */ - dumper->active = true; - - logbuf_lock_irqsave(flags); - dumper->cur_seq = clear_seq; - dumper->next_seq = prb_next_seq(prb); - logbuf_unlock_irqrestore(flags); + iter.active = true; + kmsg_dump_rewind(&iter); /* invoke dumper which will iterate over records */ - dumper->dump(dumper, reason); - - /* reset iterator */ - dumper->active = false; + dumper->dump(dumper, reason, &iter); } rcu_read_unlock(); } /** - * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) - * @dumper: registered kmsg dumper + * kmsg_dump_get_line - retrieve one kmsg log line + * @iter: kmsg dumper iterator * @syslog: include the "<4>" prefixes * @line: buffer to copy the line to * @size: maximum size of the buffer @ kernel/printk/printk.c:3283 @ void kmsg_dump(enum kmsg_dump_reason reason) * * A return value of FALSE indicates that there are no more records to * read. - * - * The function is similar to kmsg_dump_get_line(), but grabs no locks. */ -bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, - char *line, size_t size, size_t *len) +bool kmsg_dump_get_line(struct kmsg_dumper_iter *iter, bool syslog, + char *line, size_t size, size_t *len) { struct printk_info info; unsigned int line_count; @ kernel/printk/printk.c:3295 @ bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, prb_rec_init_rd(&r, &info, line, size); - if (!dumper->active) + if (!iter->active) goto out; /* Read text or count text lines? */ if (line) { - if (!prb_read_valid(prb, dumper->cur_seq, &r)) + if (!prb_read_valid(prb, iter->cur_seq, &r)) goto out; l = record_print_text(&r, syslog, printk_time); } else { - if (!prb_read_valid_info(prb, dumper->cur_seq, + if (!prb_read_valid_info(prb, iter->cur_seq, &info, &line_count)) { goto out; } @ kernel/printk/printk.c:3313 @ bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, } - dumper->cur_seq = r.info->seq + 1; + iter->cur_seq = r.info->seq + 1; ret = true; out: if (len) *len = l; return ret; } - -/** - * kmsg_dump_get_line - retrieve one kmsg log line - * @dumper: registered kmsg dumper - * @syslog: include the "<4>" prefixes - * @line: buffer to copy the line to - * @size: maximum size of the buffer - * @len: length of line placed into buffer - * - * Start at the beginning of the kmsg buffer, with the oldest kmsg - * record, and copy one record into the provided buffer. - * - * Consecutive calls will return the next available record moving - * towards the end of the buffer with the youngest messages. - * - * A return value of FALSE indicates that there are no more records to - * read. - */ -bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, - char *line, size_t size, size_t *len) -{ - unsigned long flags; - bool ret; - - logbuf_lock_irqsave(flags); - ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); - logbuf_unlock_irqrestore(flags); - - return ret; -} EXPORT_SYMBOL_GPL(kmsg_dump_get_line); /** * kmsg_dump_get_buffer - copy kmsg log lines - * @dumper: registered kmsg dumper + * @iter: kmsg dumper iterator * @syslog: include the "<4>" prefixes * @buf: buffer to copy the line to * @size: maximum size of the buffer @ kernel/printk/printk.c:3341 @ EXPORT_SYMBOL_GPL(kmsg_dump_get_line); * A return value of FALSE indicates that there are no more records to * read. */ -bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, - char *buf, size_t size, size_t *len) +bool kmsg_dump_get_buffer(struct kmsg_dumper_iter *iter, bool syslog, + char *buf, size_t size, size_t *len_out) { struct printk_info info; - unsigned int line_count; struct printk_record r; - unsigned long flags; u64 seq; u64 next_seq; - size_t l = 0; + size_t len = 0; bool ret = false; bool time = printk_time; - prb_rec_init_rd(&r, &info, buf, size); - - if (!dumper->active || !buf || !size) + if (!iter->active || !buf || !size) goto out; - logbuf_lock_irqsave(flags); - if (prb_read_valid_info(prb, dumper->cur_seq, &info, NULL)) { - if (info.seq != dumper->cur_seq) { + if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { + if (info.seq != iter->cur_seq) { /* messages are gone, move to first available one */ - dumper->cur_seq = info.seq; + iter->cur_seq = info.seq; } } /* last entry */ - if (dumper->cur_seq >= dumper->next_seq) { - logbuf_unlock_irqrestore(flags); + if (iter->cur_seq >= iter->next_seq) goto out; - } - - /* calculate length of entire buffer */ - seq = dumper->cur_seq; - while (prb_read_valid_info(prb, seq, &info, &line_count)) { - if (r.info->seq >= dumper->next_seq) - break; - l += get_record_print_text_size(&info, line_count, syslog, time); - seq = r.info->seq + 1; - } - /* move first record forward until length fits into the buffer */ - seq = dumper->cur_seq; - while (l >= size && prb_read_valid_info(prb, seq, - &info, &line_count)) { - if (r.info->seq >= dumper->next_seq) - break; - l -= get_record_print_text_size(&info, line_count, syslog, time); - seq = r.info->seq + 1; - } + /* + * Find first record that fits, including all following records, + * into the user-provided buffer for this dump. Pass in size-1 + * because this function (by way of record_print_text()) will + * not write more than size-1 bytes of text into @buf. + */ + seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, + size - 1, syslog, time); - /* last message in next interation */ + /* + * Next kmsg_dump_get_buffer() invocation will dump block of + * older records stored right before this one. + */ next_seq = seq; - /* actually read text into the buffer now */ - l = 0; - while (prb_read_valid(prb, seq, &r)) { - if (r.info->seq >= dumper->next_seq) - break; + prb_rec_init_rd(&r, &info, buf, size); - l += record_print_text(&r, syslog, time); + len = 0; + prb_for_each_record(seq, prb, seq, &r) { + if (r.info->seq >= iter->next_seq) + break; - /* adjust record to store to remaining buffer space */ - prb_rec_init_rd(&r, &info, buf + l, size - l); + len += record_print_text(&r, syslog, time); - seq = r.info->seq + 1; + /* Adjust record to store to remaining buffer space. */ + prb_rec_init_rd(&r, &info, buf + len, size - len); } - dumper->next_seq = next_seq; + iter->next_seq = next_seq; ret = true; - logbuf_unlock_irqrestore(flags); out: - if (len) - *len = l; + if (len_out) + *len_out = len; return ret; } EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); /** - * kmsg_dump_rewind_nolock - reset the iterator (unlocked version) - * @dumper: registered kmsg dumper + * kmsg_dump_rewind - reset the iterator + * @iter: kmsg dumper iterator * * Reset the dumper's iterator so that kmsg_dump_get_line() and * kmsg_dump_get_buffer() can be called again and used multiple * times within the same dumper.dump() callback. + */ +void kmsg_dump_rewind(struct kmsg_dumper_iter *iter) +{ + iter->cur_seq = latched_seq_read_nolock(&clear_seq); + iter->next_seq = prb_next_seq(prb); +} +EXPORT_SYMBOL_GPL(kmsg_dump_rewind); + +#endif + +struct prb_cpulock { + atomic_t owner; + unsigned long __percpu *irqflags; +}; + +#define DECLARE_STATIC_PRINTKRB_CPULOCK(name) \ +static DEFINE_PER_CPU(unsigned long, _##name##_percpu_irqflags); \ +static struct prb_cpulock name = { \ + .owner = ATOMIC_INIT(-1), \ + .irqflags = &_##name##_percpu_irqflags, \ +} + +static bool __prb_trylock(struct prb_cpulock *cpu_lock, + unsigned int *cpu_store) +{ + unsigned long *flags; + unsigned int cpu; + + cpu = get_cpu(); + + *cpu_store = atomic_read(&cpu_lock->owner); + /* memory barrier to ensure the current lock owner is visible */ + smp_rmb(); + if (*cpu_store == -1) { + flags = per_cpu_ptr(cpu_lock->irqflags, cpu); + local_irq_save(*flags); + if (atomic_try_cmpxchg_acquire(&cpu_lock->owner, + cpu_store, cpu)) { + return true; + } + local_irq_restore(*flags); + } else if (*cpu_store == cpu) { + return true; + } + + put_cpu(); + return false; +} + +/* + * prb_lock: Perform a processor-reentrant spin lock. + * @cpu_lock: A pointer to the lock object. + * @cpu_store: A "flags" pointer to store lock status information. + * + * If no processor has the lock, the calling processor takes the lock and + * becomes the owner. If the calling processor is already the owner of the + * lock, this function succeeds immediately. If lock is locked by another + * processor, this function spins until the calling processor becomes the + * owner. + * + * It is safe to call this function from any context and state. + */ +static void prb_lock(struct prb_cpulock *cpu_lock, unsigned int *cpu_store) +{ + for (;;) { + if (__prb_trylock(cpu_lock, cpu_store)) + break; + cpu_relax(); + } +} + +/* + * prb_unlock: Perform a processor-reentrant spin unlock. + * @cpu_lock: A pointer to the lock object. + * @cpu_store: A "flags" object storing lock status information. * - * The function is similar to kmsg_dump_rewind(), but grabs no locks. + * Release the lock. The calling processor must be the owner of the lock. + * + * It is safe to call this function from any context and state. */ -void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) +static void prb_unlock(struct prb_cpulock *cpu_lock, unsigned int cpu_store) { - dumper->cur_seq = clear_seq; - dumper->next_seq = prb_next_seq(prb); + unsigned long *flags; + unsigned int cpu; + + cpu = atomic_read(&cpu_lock->owner); + atomic_set_release(&cpu_lock->owner, cpu_store); + + if (cpu_store == -1) { + flags = per_cpu_ptr(cpu_lock->irqflags, cpu); + local_irq_restore(*flags); + } + + put_cpu(); +} + +DECLARE_STATIC_PRINTKRB_CPULOCK(printk_cpulock); + +void console_atomic_lock(unsigned int *flags) +{ + prb_lock(&printk_cpulock, flags); +} +EXPORT_SYMBOL(console_atomic_lock); + +void console_atomic_unlock(unsigned int flags) +{ + prb_unlock(&printk_cpulock, flags); +} +EXPORT_SYMBOL(console_atomic_unlock); + +static void pr_msleep(bool may_sleep, int ms) +{ + if (may_sleep) { + msleep(ms); + } else { + while (ms--) + udelay(1000); + } } /** - * kmsg_dump_rewind - reset the iterator - * @dumper: registered kmsg dumper + * pr_flush() - Wait for printing threads to catch up. * - * Reset the dumper's iterator so that kmsg_dump_get_line() and - * kmsg_dump_get_buffer() can be called again and used multiple - * times within the same dumper.dump() callback. + * @timeout_ms: The maximum time (in ms) to wait. + * @reset_on_progress: Reset the timeout if forward progress is seen. + * + * A value of 0 for @timeout_ms means no waiting will occur. A value of -1 + * represents infinite waiting. + * + * If @reset_on_progress is true, the timeout will be reset whenever any + * printer has been seen to make some forward progress. + * + * Context: Any context. + * Return: true if all enabled printers are caught up. */ -void kmsg_dump_rewind(struct kmsg_dumper *dumper) +bool pr_flush(int timeout_ms, bool reset_on_progress) { - unsigned long flags; + int remaining = timeout_ms; + struct console *con; + u64 last_diff = 0; + bool may_sleep; + u64 printk_seq; + u64 diff; + u64 seq; - logbuf_lock_irqsave(flags); - kmsg_dump_rewind_nolock(dumper); - logbuf_unlock_irqrestore(flags); -} -EXPORT_SYMBOL_GPL(kmsg_dump_rewind); + may_sleep = (preemptible() && + !in_softirq() && + system_state >= SYSTEM_RUNNING); -#endif + seq = prb_next_seq(prb); + + for (;;) { + diff = 0; + + for_each_console(con) { + if (!(con->flags & CON_ENABLED)) + continue; + printk_seq = atomic64_read(&con->printk_seq); + if (printk_seq < seq) + diff += seq - printk_seq; + } + + if (diff != last_diff && reset_on_progress) + remaining = timeout_ms; + + if (!diff || remaining == 0) + break; + + if (remaining < 0) { + pr_msleep(may_sleep, 100); + } else if (remaining < 100) { + pr_msleep(may_sleep, remaining); + remaining = 0; + } else { + pr_msleep(may_sleep, 100); + remaining -= 100; + } + + last_diff = diff; + } + + return (diff == 0); +} +EXPORT_SYMBOL(pr_flush); @ kernel/printk/printk_safe.c:1 @ -// SPDX-License-Identifier: GPL-2.0-or-later -/* - * printk_safe.c - Safe printk for printk-deadlock-prone contexts - */ - -#include <linux/preempt.h> -#include <linux/spinlock.h> -#include <linux/debug_locks.h> -#include <linux/kdb.h> -#include <linux/smp.h> -#include <linux/cpumask.h> -#include <linux/irq_work.h> -#include <linux/printk.h> -#include <linux/kprobes.h> - -#include "internal.h" - -/* - * printk() could not take logbuf_lock in NMI context. Instead, - * it uses an alternative implementation that temporary stores - * the strings into a per-CPU buffer. The content of the buffer - * is later flushed into the main ring buffer via IRQ work. - * - * The alternative implementation is chosen transparently - * by examining current printk() context mask stored in @printk_context - * per-CPU variable. - * - * The implementation allows to flush the strings also from another CPU. - * There are situations when we want to make sure that all buffers - * were handled or when IRQs are blocked. - */ - -#define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) - \ - sizeof(atomic_t) - \ - sizeof(atomic_t) - \ - sizeof(struct irq_work)) - -struct printk_safe_seq_buf { - atomic_t len; /* length of written data */ - atomic_t message_lost; - struct irq_work work; /* IRQ work that flushes the buffer */ - unsigned char buffer[SAFE_LOG_BUF_LEN]; -}; - -static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq); -static DEFINE_PER_CPU(int, printk_context); - -static DEFINE_RAW_SPINLOCK(safe_read_lock); - -#ifdef CONFIG_PRINTK_NMI -static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq); -#endif - -/* Get flushed in a more safe context. */ -static void queue_flush_work(struct printk_safe_seq_buf *s) -{ - if (printk_percpu_data_ready()) - irq_work_queue(&s->work); -} - -/* - * Add a message to per-CPU context-dependent buffer. NMI and printk-safe - * have dedicated buffers, because otherwise printk-safe preempted by - * NMI-printk would have overwritten the NMI messages. - * - * The messages are flushed from irq work (or from panic()), possibly, - * from other CPU, concurrently with printk_safe_log_store(). Should this - * happen, printk_safe_log_store() will notice the buffer->len mismatch - * and repeat the write. - */ -static __printf(2, 0) int printk_safe_log_store(struct printk_safe_seq_buf *s, - const char *fmt, va_list args) -{ - int add; - size_t len; - va_list ap; - -again: - len = atomic_read(&s->len); - - /* The trailing '\0' is not counted into len. */ - if (len >= sizeof(s->buffer) - 1) { - atomic_inc(&s->message_lost); - queue_flush_work(s); - return 0; - } - - /* - * Make sure that all old data have been read before the buffer - * was reset. This is not needed when we just append data. - */ - if (!len) - smp_rmb(); - - va_copy(ap, args); - add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, ap); - va_end(ap); - if (!add) - return 0; - - /* - * Do it once again if the buffer has been flushed in the meantime. - * Note that atomic_cmpxchg() is an implicit memory barrier that - * makes sure that the data were written before updating s->len. - */ - if (atomic_cmpxchg(&s->len, len, len + add) != len) - goto again; - - queue_flush_work(s); - return add; -} - -static inline void printk_safe_flush_line(const char *text, int len) -{ - /* - * Avoid any console drivers calls from here, because we may be - * in NMI or printk_safe context (when in panic). The messages - * must go only into the ring buffer at this stage. Consoles will - * get explicitly called later when a crashdump is not generated. - */ - printk_deferred("%.*s", len, text); -} - -/* printk part of the temporary buffer line by line */ -static int printk_safe_flush_buffer(const char *start, size_t len) -{ - const char *c, *end; - bool header; - - c = start; - end = start + len; - header = true; - - /* Print line by line. */ - while (c < end) { - if (*c == '\n') { - printk_safe_flush_line(start, c - start + 1); - start = ++c; - header = true; - continue; - } - - /* Handle continuous lines or missing new line. */ - if ((c + 1 < end) && printk_get_level(c)) { - if (header) { - c = printk_skip_level(c); - continue; - } - - printk_safe_flush_line(start, c - start); - start = c++; - header = true; - continue; - } - - header = false; - c++; - } - - /* Check if there was a partial line. Ignore pure header. */ - if (start < end && !header) { - static const char newline[] = KERN_CONT "\n"; - - printk_safe_flush_line(start, end - start); - printk_safe_flush_line(newline, strlen(newline)); - } - - return len; -} - -static void report_message_lost(struct printk_safe_seq_buf *s) -{ - int lost = atomic_xchg(&s->message_lost, 0); - - if (lost) - printk_deferred("Lost %d message(s)!\n", lost); -} - -/* - * Flush data from the associated per-CPU buffer. The function - * can be called either via IRQ work or independently. - */ -static void __printk_safe_flush(struct irq_work *work) -{ - struct printk_safe_seq_buf *s = - container_of(work, struct printk_safe_seq_buf, work); - unsigned long flags; - size_t len; - int i; - - /* - * The lock has two functions. First, one reader has to flush all - * available message to make the lockless synchronization with - * writers easier. Second, we do not want to mix messages from - * different CPUs. This is especially important when printing - * a backtrace. - */ - raw_spin_lock_irqsave(&safe_read_lock, flags); - - i = 0; -more: - len = atomic_read(&s->len); - - /* - * This is just a paranoid check that nobody has manipulated - * the buffer an unexpected way. If we printed something then - * @len must only increase. Also it should never overflow the - * buffer size. - */ - if ((i && i >= len) || len > sizeof(s->buffer)) { - const char *msg = "printk_safe_flush: internal error\n"; - - printk_safe_flush_line(msg, strlen(msg)); - len = 0; - } - - if (!len) - goto out; /* Someone else has already flushed the buffer. */ - - /* Make sure that data has been written up to the @len */ - smp_rmb(); - i += printk_safe_flush_buffer(s->buffer + i, len - i); - - /* - * Check that nothing has got added in the meantime and truncate - * the buffer. Note that atomic_cmpxchg() is an implicit memory - * barrier that makes sure that the data were copied before - * updating s->len. - */ - if (atomic_cmpxchg(&s->len, len, 0) != len) - goto more; - -out: - report_message_lost(s); - raw_spin_unlock_irqrestore(&safe_read_lock, flags); -} - -/** - * printk_safe_flush - flush all per-cpu nmi buffers. - * - * The buffers are flushed automatically via IRQ work. This function - * is useful only when someone wants to be sure that all buffers have - * been flushed at some point. - */ -void printk_safe_flush(void) -{ - int cpu; - - for_each_possible_cpu(cpu) { -#ifdef CONFIG_PRINTK_NMI - __printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work); -#endif - __printk_safe_flush(&per_cpu(safe_print_seq, cpu).work); - } -} - -/** - * printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system - * goes down. - * - * Similar to printk_safe_flush() but it can be called even in NMI context when - * the system goes down. It does the best effort to get NMI messages into - * the main ring buffer. - * - * Note that it could try harder when there is only one CPU online. - */ -void printk_safe_flush_on_panic(void) -{ - /* - * Make sure that we could access the main ring buffer. - * Do not risk a double release when more CPUs are up. - */ - if (raw_spin_is_locked(&logbuf_lock)) { - if (num_online_cpus() > 1) - return; - - debug_locks_off(); - raw_spin_lock_init(&logbuf_lock); - } - - if (raw_spin_is_locked(&safe_read_lock)) { - if (num_online_cpus() > 1) - return; - - debug_locks_off(); - raw_spin_lock_init(&safe_read_lock); - } - - printk_safe_flush(); -} - -#ifdef CONFIG_PRINTK_NMI -/* - * Safe printk() for NMI context. It uses a per-CPU buffer to - * store the message. NMIs are not nested, so there is always only - * one writer running. But the buffer might get flushed from another - * CPU, so we need to be careful. - */ -static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args) -{ - struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq); - - return printk_safe_log_store(s, fmt, args); -} - -void noinstr printk_nmi_enter(void) -{ - this_cpu_add(printk_context, PRINTK_NMI_CONTEXT_OFFSET); -} - -void noinstr printk_nmi_exit(void) -{ - this_cpu_sub(printk_context, PRINTK_NMI_CONTEXT_OFFSET); -} - -/* - * Marks a code that might produce many messages in NMI context - * and the risk of losing them is more critical than eventual - * reordering. - * - * It has effect only when called in NMI context. Then printk() - * will try to store the messages into the main logbuf directly - * and use the per-CPU buffers only as a fallback when the lock - * is not available. - */ -void printk_nmi_direct_enter(void) -{ - if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK) - this_cpu_or(printk_context, PRINTK_NMI_DIRECT_CONTEXT_MASK); -} - -void printk_nmi_direct_exit(void) -{ - this_cpu_and(printk_context, ~PRINTK_NMI_DIRECT_CONTEXT_MASK); -} - -#else - -static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args) -{ - return 0; -} - -#endif /* CONFIG_PRINTK_NMI */ - -/* - * Lock-less printk(), to avoid deadlocks should the printk() recurse - * into itself. It uses a per-CPU buffer to store the message, just like - * NMI. - */ -static __printf(1, 0) int vprintk_safe(const char *fmt, va_list args) -{ - struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq); - - return printk_safe_log_store(s, fmt, args); -} - -/* Can be preempted by NMI. */ -void __printk_safe_enter(void) -{ - this_cpu_inc(printk_context); -} - -/* Can be preempted by NMI. */ -void __printk_safe_exit(void) -{ - this_cpu_dec(printk_context); -} - -__printf(1, 0) int vprintk_func(const char *fmt, va_list args) -{ -#ifdef CONFIG_KGDB_KDB - /* Allow to pass printk() to kdb but avoid a recursion. */ - if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) - return vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); -#endif - - /* - * Try to use the main logbuf even in NMI. But avoid calling console - * drivers that might have their own locks. - */ - if ((this_cpu_read(printk_context) & PRINTK_NMI_DIRECT_CONTEXT_MASK) && - raw_spin_trylock(&logbuf_lock)) { - int len; - - len = vprintk_store(0, LOGLEVEL_DEFAULT, NULL, fmt, args); - raw_spin_unlock(&logbuf_lock); - defer_console_output(); - return len; - } - - /* Use extra buffer in NMI when logbuf_lock is taken or in safe mode. */ - if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK) - return vprintk_nmi(fmt, args); - - /* Use extra buffer to prevent a recursion deadlock in safe mode. */ - if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK) - return vprintk_safe(fmt, args); - - /* No obstacles. */ - return vprintk_default(fmt, args); -} - -void __init printk_safe_init(void) -{ - int cpu; - - for_each_possible_cpu(cpu) { - struct printk_safe_seq_buf *s; - - s = &per_cpu(safe_print_seq, cpu); - init_irq_work(&s->work, __printk_safe_flush); - -#ifdef CONFIG_PRINTK_NMI - s = &per_cpu(nmi_print_seq, cpu); - init_irq_work(&s->work, __printk_safe_flush); -#endif - } - - /* Flush pending messages that did not have scheduled IRQ works. */ - printk_safe_flush(); -} @ kernel/ptrace.c:199 @ static bool ptrace_freeze_traced(struct task_struct *task) spin_lock_irq(&task->sighand->siglock); if (task_is_traced(task) && !looks_like_a_spurious_pid(task) && !__fatal_signal_pending(task)) { - task->state = __TASK_TRACED; + unsigned long flags; + + raw_spin_lock_irqsave(&task->pi_lock, flags); + if (task->state & __TASK_TRACED) + task->state = __TASK_TRACED; + else + task->saved_state = __TASK_TRACED; + raw_spin_unlock_irqrestore(&task->pi_lock, flags); ret = true; } spin_unlock_irq(&task->sighand->siglock); @ kernel/ptrace.c:216 @ static bool ptrace_freeze_traced(struct task_struct *task) static void ptrace_unfreeze_traced(struct task_struct *task) { - if (task->state != __TASK_TRACED) - return; + unsigned long flags; + bool frozen = true; WARN_ON(!task->ptrace || task->parent != current); @ kernel/ptrace.c:226 @ static void ptrace_unfreeze_traced(struct task_struct *task) * Recheck state under the lock to close this race. */ spin_lock_irq(&task->sighand->siglock); - if (task->state == __TASK_TRACED) { - if (__fatal_signal_pending(task)) - wake_up_state(task, __TASK_TRACED); - else - task->state = TASK_TRACED; - } + + raw_spin_lock_irqsave(&task->pi_lock, flags); + if (task->state == __TASK_TRACED) + task->state = TASK_TRACED; + else if (task->saved_state == __TASK_TRACED) + task->saved_state = TASK_TRACED; + else + frozen = false; + raw_spin_unlock_irqrestore(&task->pi_lock, flags); + + if (frozen && __fatal_signal_pending(task)) + wake_up_state(task, __TASK_TRACED); + spin_unlock_irq(&task->sighand->siglock); } @ kernel/rcu/Kconfig:191 @ config RCU_FAST_NO_HZ config RCU_BOOST bool "Enable RCU priority boosting" - depends on RT_MUTEXES && PREEMPT_RCU && RCU_EXPERT - default n + depends on (RT_MUTEXES && PREEMPT_RCU && RCU_EXPERT) || PREEMPT_RT + default y if PREEMPT_RT help This option boosts the priority of preempted RCU readers that block the current preemptible RCU grace period for too long. @ kernel/rcu/tree.c:103 @ static struct rcu_state rcu_state = { static bool dump_tree; module_param(dump_tree, bool, 0444); /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ -static bool use_softirq = true; +static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); +#ifndef CONFIG_PREEMPT_RT module_param(use_softirq, bool, 0444); +#endif /* Control rcu_node-tree auto-balancing at boot time. */ static bool rcu_fanout_exact; module_param(rcu_fanout_exact, bool, 0444); @ kernel/rcu/update.c:59 @ #ifndef CONFIG_TINY_RCU module_param(rcu_expedited, int, 0); module_param(rcu_normal, int, 0); -static int rcu_normal_after_boot; +static int rcu_normal_after_boot = IS_ENABLED(CONFIG_PREEMPT_RT); +#ifndef CONFIG_PREEMPT_RT module_param(rcu_normal_after_boot, int, 0); +#endif #endif /* #ifndef CONFIG_TINY_RCU */ #ifdef CONFIG_DEBUG_LOCK_ALLOC @ kernel/sched/core.c:67 @ const_debug unsigned int sysctl_sched_features = * Number of tasks to iterate in a single balance run. * Limited because this is done with IRQs disabled. */ +#ifdef CONFIG_PREEMPT_RT +const_debug unsigned int sysctl_sched_nr_migrate = 8; +#else const_debug unsigned int sysctl_sched_nr_migrate = 32; +#endif /* * period over which we measure -rt task CPU usage in us. @ kernel/sched/core.c:517 @ static bool set_nr_if_polling(struct task_struct *p) #endif #endif -static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) +static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task, + bool sleeper) { - struct wake_q_node *node = &task->wake_q; + struct wake_q_node *node; + + if (sleeper) + node = &task->wake_q_sleeper; + else + node = &task->wake_q; /* * Atomically grab the task, if ->wake_q is !nil already it means @ kernel/sched/core.c:561 @ static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) */ void wake_q_add(struct wake_q_head *head, struct task_struct *task) { - if (__wake_q_add(head, task)) + if (__wake_q_add(head, task, false)) + get_task_struct(task); +} + +void wake_q_add_sleeper(struct wake_q_head *head, struct task_struct *task) +{ + if (__wake_q_add(head, task, true)) get_task_struct(task); } @ kernel/sched/core.c:590 @ void wake_q_add(struct wake_q_head *head, struct task_struct *task) */ void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) { - if (!__wake_q_add(head, task)) + if (!__wake_q_add(head, task, false)) put_task_struct(task); } -void wake_up_q(struct wake_q_head *head) +void __wake_up_q(struct wake_q_head *head, bool sleeper) { struct wake_q_node *node = head->first; while (node != WAKE_Q_TAIL) { struct task_struct *task; - task = container_of(node, struct task_struct, wake_q); + if (sleeper) + task = container_of(node, struct task_struct, wake_q_sleeper); + else + task = container_of(node, struct task_struct, wake_q); + BUG_ON(!task); /* Task can safely be re-inserted now: */ node = node->next; - task->wake_q.next = NULL; + if (sleeper) + task->wake_q_sleeper.next = NULL; + else + task->wake_q.next = NULL; /* * wake_up_process() executes a full barrier, which pairs with * the queueing in wake_q_add() so as not to miss wakeups. */ - wake_up_process(task); + if (sleeper) + wake_up_lock_sleeper(task); + else + wake_up_process(task); + put_task_struct(task); } } @ kernel/sched/core.c:658 @ void resched_curr(struct rq *rq) trace_sched_wake_idle_without_ipi(cpu); } +#ifdef CONFIG_PREEMPT_LAZY + +static int tsk_is_polling(struct task_struct *p) +{ +#ifdef TIF_POLLING_NRFLAG + return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); +#else + return 0; +#endif +} + +void resched_curr_lazy(struct rq *rq) +{ + struct task_struct *curr = rq->curr; + int cpu; + + if (!sched_feat(PREEMPT_LAZY)) { + resched_curr(rq); + return; + } + + lockdep_assert_held(&rq->lock); + + if (test_tsk_need_resched(curr)) + return; + + if (test_tsk_need_resched_lazy(curr)) + return; + + set_tsk_need_resched_lazy(curr); + + cpu = cpu_of(rq); + if (cpu == smp_processor_id()) + return; + + /* NEED_RESCHED_LAZY must be visible before we test polling */ + smp_mb(); + if (!tsk_is_polling(curr)) + smp_send_reschedule(cpu); +} +#endif + void resched_cpu(int cpu) { struct rq *rq = cpu_rq(cpu); @ kernel/sched/core.c:1777 @ void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) #ifdef CONFIG_SMP +static void +__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); + +static int __set_cpus_allowed_ptr(struct task_struct *p, + const struct cpumask *new_mask, + u32 flags); + +static void migrate_disable_switch(struct rq *rq, struct task_struct *p) +{ + if (likely(!p->migration_disabled)) + return; + + if (p->cpus_ptr != &p->cpus_mask) + return; + + /* + * Violates locking rules! see comment in __do_set_cpus_allowed(). + */ + __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); +} + +void migrate_disable(void) +{ + struct task_struct *p = current; + + if (p->migration_disabled) { + p->migration_disabled++; + return; + } + + trace_sched_migrate_disable_tp(p); + + preempt_disable(); + this_rq()->nr_pinned++; + p->migration_disabled = 1; + preempt_lazy_disable(); + preempt_enable(); +} +EXPORT_SYMBOL_GPL(migrate_disable); + +void migrate_enable(void) +{ + struct task_struct *p = current; + + if (p->migration_disabled > 1) { + p->migration_disabled--; + return; + } + + /* + * Ensure stop_task runs either before or after this, and that + * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). + */ + preempt_disable(); + if (p->cpus_ptr != &p->cpus_mask) + __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); + /* + * Mustn't clear migration_disabled() until cpus_ptr points back at the + * regular cpus_mask, otherwise things that race (eg. + * select_fallback_rq) get confused. + */ + barrier(); + p->migration_disabled = 0; + this_rq()->nr_pinned--; + preempt_lazy_enable(); + preempt_enable(); + + trace_sched_migrate_enable_tp(p); +} +EXPORT_SYMBOL_GPL(migrate_enable); + +static inline bool rq_has_pinned_tasks(struct rq *rq) +{ + return rq->nr_pinned; +} + /* * Per-CPU kthreads are allowed to run on !active && online CPUs, see * __set_cpus_allowed_ptr() and select_fallback_rq(). @ kernel/sched/core.c:1862 @ static inline bool is_cpu_allowed(struct task_struct *p, int cpu) if (!cpumask_test_cpu(cpu, p->cpus_ptr)) return false; - if (is_per_cpu_kthread(p)) + if (is_per_cpu_kthread(p) || is_migration_disabled(p)) return cpu_online(cpu); return cpu_active(cpu); @ kernel/sched/core.c:1907 @ static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, } struct migration_arg { - struct task_struct *task; - int dest_cpu; + struct task_struct *task; + int dest_cpu; + struct set_affinity_pending *pending; +}; + +/* + * @refs: number of wait_for_completion() + * @stop_pending: is @stop_work in use + */ +struct set_affinity_pending { + refcount_t refs; + unsigned int stop_pending; + struct completion done; + struct cpu_stop_work stop_work; + struct migration_arg arg; }; /* @ kernel/sched/core.c:1954 @ static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, static int migration_cpu_stop(void *data) { struct migration_arg *arg = data; + struct set_affinity_pending *pending = arg->pending; struct task_struct *p = arg->task; struct rq *rq = this_rq(); + bool complete = false; struct rq_flags rf; /* * The original target CPU might have gone down and we might * be on another CPU but it doesn't matter. */ - local_irq_disable(); + local_irq_save(rf.flags); /* * We need to explicitly wake pending tasks before running * __migrate_task() such that we will not miss enforcing cpus_ptr @ kernel/sched/core.c:1974 @ static int migration_cpu_stop(void *data) raw_spin_lock(&p->pi_lock); rq_lock(rq, &rf); + /* * If task_rq(p) != rq, it cannot be migrated here, because we're * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because * we're holding p->pi_lock. */ if (task_rq(p) == rq) { + if (is_migration_disabled(p)) + goto out; + + if (pending) { + if (p->migration_pending == pending) + p->migration_pending = NULL; + complete = true; + + if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) + goto out; + } + if (task_on_rq_queued(p)) rq = __migrate_task(rq, &rf, p, arg->dest_cpu); else p->wake_cpu = arg->dest_cpu; + + /* + * XXX __migrate_task() can fail, at which point we might end + * up running on a dodgy CPU, AFAICT this can only happen + * during CPU hotplug, at which point we'll get pushed out + * anyway, so it's probably not a big deal. + */ + + } else if (pending) { + /* + * This happens when we get migrated between migrate_enable()'s + * preempt_enable() and scheduling the stopper task. At that + * point we're a regular task again and not current anymore. + * + * A !PREEMPT kernel has a giant hole here, which makes it far + * more likely. + */ + + /* + * The task moved before the stopper got to run. We're holding + * ->pi_lock, so the allowed mask is stable - if it got + * somewhere allowed, we're done. + */ + if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { + if (p->migration_pending == pending) + p->migration_pending = NULL; + complete = true; + goto out; + } + + /* + * When migrate_enable() hits a rq mis-match we can't reliably + * determine is_migration_disabled() and so have to chase after + * it. + */ + WARN_ON_ONCE(!pending->stop_pending); + task_rq_unlock(rq, p, &rf); + stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, + &pending->arg, &pending->stop_work); + return 0; } - rq_unlock(rq, &rf); - raw_spin_unlock(&p->pi_lock); +out: + if (pending) + pending->stop_pending = false; + task_rq_unlock(rq, p, &rf); + + if (complete) + complete_all(&pending->done); - local_irq_enable(); + return 0; +} + +int push_cpu_stop(void *arg) +{ + struct rq *lowest_rq = NULL, *rq = this_rq(); + struct task_struct *p = arg; + + raw_spin_lock_irq(&p->pi_lock); + raw_spin_lock(&rq->lock); + + if (task_rq(p) != rq) + goto out_unlock; + + if (is_migration_disabled(p)) { + p->migration_flags |= MDF_PUSH; + goto out_unlock; + } + + p->migration_flags &= ~MDF_PUSH; + + if (p->sched_class->find_lock_rq) + lowest_rq = p->sched_class->find_lock_rq(p, rq); + + if (!lowest_rq) + goto out_unlock; + + // XXX validate p is still the highest prio task + if (task_rq(p) == rq) { + deactivate_task(rq, p, 0); + set_task_cpu(p, lowest_rq->cpu); + activate_task(lowest_rq, p, 0); + resched_curr(lowest_rq); + } + + double_unlock_balance(rq, lowest_rq); + +out_unlock: + rq->push_busy = false; + raw_spin_unlock(&rq->lock); + raw_spin_unlock_irq(&p->pi_lock); + + put_task_struct(p); return 0; } @ kernel/sched/core.c:2096 @ static int migration_cpu_stop(void *data) * sched_class::set_cpus_allowed must do the below, but is not required to * actually call this function. */ -void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) +void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) { + if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { + p->cpus_ptr = new_mask; + return; + } + cpumask_copy(&p->cpus_mask, new_mask); p->nr_cpus_allowed = cpumask_weight(new_mask); } -void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) +static void +__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) { struct rq *rq = task_rq(p); bool queued, running; - lockdep_assert_held(&p->pi_lock); + /* + * This here violates the locking rules for affinity, since we're only + * supposed to change these variables while holding both rq->lock and + * p->pi_lock. + * + * HOWEVER, it magically works, because ttwu() is the only code that + * accesses these variables under p->pi_lock and only does so after + * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() + * before finish_task(). + * + * XXX do further audits, this smells like something putrid. + */ + if (flags & SCA_MIGRATE_DISABLE) + SCHED_WARN_ON(!p->on_cpu); + else + lockdep_assert_held(&p->pi_lock); queued = task_on_rq_queued(p); running = task_current(rq, p); @ kernel/sched/core.c:2144 @ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) if (running) put_prev_task(rq, p); - p->sched_class->set_cpus_allowed(p, new_mask); + p->sched_class->set_cpus_allowed(p, new_mask, flags); if (queued) enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); @ kernel/sched/core.c:2152 @ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) set_next_task(rq, p); } +void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) +{ + __do_set_cpus_allowed(p, new_mask, 0); +} + +/* + * This function is wildly self concurrent; here be dragons. + * + * + * When given a valid mask, __set_cpus_allowed_ptr() must block until the + * designated task is enqueued on an allowed CPU. If that task is currently + * running, we have to kick it out using the CPU stopper. + * + * Migrate-Disable comes along and tramples all over our nice sandcastle. + * Consider: + * + * Initial conditions: P0->cpus_mask = [0, 1] + * + * P0@CPU0 P1 + * + * migrate_disable(); + * <preempted> + * set_cpus_allowed_ptr(P0, [1]); + * + * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes + * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). + * This means we need the following scheme: + * + * P0@CPU0 P1 + * + * migrate_disable(); + * <preempted> + * set_cpus_allowed_ptr(P0, [1]); + * <blocks> + * <resumes> + * migrate_enable(); + * __set_cpus_allowed_ptr(); + * <wakes local stopper> + * `--> <woken on migration completion> + * + * Now the fun stuff: there may be several P1-like tasks, i.e. multiple + * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any + * task p are serialized by p->pi_lock, which we can leverage: the one that + * should come into effect at the end of the Migrate-Disable region is the last + * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), + * but we still need to properly signal those waiting tasks at the appropriate + * moment. + * + * This is implemented using struct set_affinity_pending. The first + * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will + * setup an instance of that struct and install it on the targeted task_struct. + * Any and all further callers will reuse that instance. Those then wait for + * a completion signaled at the tail of the CPU stopper callback (1), triggered + * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). + * + * + * (1) In the cases covered above. There is one more where the completion is + * signaled within affine_move_task() itself: when a subsequent affinity request + * cancels the need for an active migration. Consider: + * + * Initial conditions: P0->cpus_mask = [0, 1] + * + * P0@CPU0 P1 P2 + * + * migrate_disable(); + * <preempted> + * set_cpus_allowed_ptr(P0, [1]); + * <blocks> + * set_cpus_allowed_ptr(P0, [0, 1]); + * <signal completion> + * <awakes> + * + * Note that the above is safe vs a concurrent migrate_enable(), as any + * pending affinity completion is preceded an uninstallion of + * p->migration_pending done with p->pi_lock held. + */ +static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, + int dest_cpu, unsigned int flags) +{ + struct set_affinity_pending my_pending = { }, *pending = NULL; + bool stop_pending, complete = false; + + /* Can the task run on the task's current CPU? If so, we're done */ + if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { + struct task_struct *push_task = NULL; + + if ((flags & SCA_MIGRATE_ENABLE) && + (p->migration_flags & MDF_PUSH) && !rq->push_busy) { + rq->push_busy = true; + push_task = get_task_struct(p); + } + + /* + * If there are pending waiters, but no pending stop_work, + * then complete now. + */ + pending = p->migration_pending; + if (pending && !pending->stop_pending) { + p->migration_pending = NULL; + complete = true; + } + + task_rq_unlock(rq, p, rf); + + if (push_task) { + stop_one_cpu_nowait(rq->cpu, push_cpu_stop, + p, &rq->push_work); + } + + if (complete) + complete_all(&pending->done); + + return 0; + } + + if (!(flags & SCA_MIGRATE_ENABLE)) { + /* serialized by p->pi_lock */ + if (!p->migration_pending) { + /* Install the request */ + refcount_set(&my_pending.refs, 1); + init_completion(&my_pending.done); + my_pending.arg = (struct migration_arg) { + .task = p, + .dest_cpu = dest_cpu, + .pending = &my_pending, + }; + + p->migration_pending = &my_pending; + } else { + pending = p->migration_pending; + refcount_inc(&pending->refs); + /* + * Affinity has changed, but we've already installed a + * pending. migration_cpu_stop() *must* see this, else + * we risk a completion of the pending despite having a + * task on a disallowed CPU. + * + * Serialized by p->pi_lock, so this is safe. + */ + pending->arg.dest_cpu = dest_cpu; + } + } + pending = p->migration_pending; + /* + * - !MIGRATE_ENABLE: + * we'll have installed a pending if there wasn't one already. + * + * - MIGRATE_ENABLE: + * we're here because the current CPU isn't matching anymore, + * the only way that can happen is because of a concurrent + * set_cpus_allowed_ptr() call, which should then still be + * pending completion. + * + * Either way, we really should have a @pending here. + */ + if (WARN_ON_ONCE(!pending)) { + task_rq_unlock(rq, p, rf); + return -EINVAL; + } + + if (task_running(rq, p) || p->state == TASK_WAKING) { + /* + * MIGRATE_ENABLE gets here because 'p == current', but for + * anything else we cannot do is_migration_disabled(), punt + * and have the stopper function handle it all race-free. + */ + stop_pending = pending->stop_pending; + if (!stop_pending) + pending->stop_pending = true; + + if (flags & SCA_MIGRATE_ENABLE) + p->migration_flags &= ~MDF_PUSH; + + task_rq_unlock(rq, p, rf); + + if (!stop_pending) { + stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, + &pending->arg, &pending->stop_work); + } + + if (flags & SCA_MIGRATE_ENABLE) + return 0; + } else { + + if (!is_migration_disabled(p)) { + if (task_on_rq_queued(p)) + rq = move_queued_task(rq, rf, p, dest_cpu); + + if (!pending->stop_pending) { + p->migration_pending = NULL; + complete = true; + } + } + task_rq_unlock(rq, p, rf); + + if (complete) + complete_all(&pending->done); + } + + wait_for_completion(&pending->done); + + if (refcount_dec_and_test(&pending->refs)) + wake_up_var(&pending->refs); /* No UaF, just an address */ + + /* + * Block the original owner of &pending until all subsequent callers + * have seen the completion and decremented the refcount + */ + wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); + + /* ARGH */ + WARN_ON_ONCE(my_pending.stop_pending); + + return 0; +} + /* * Change a given task's CPU affinity. Migrate the thread to a * proper CPU and schedule it away if the CPU it's executing on @ kernel/sched/core.c:2378 @ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) * call is not atomic; no spinlocks may be held. */ static int __set_cpus_allowed_ptr(struct task_struct *p, - const struct cpumask *new_mask, bool check) + const struct cpumask *new_mask, + u32 flags) { const struct cpumask *cpu_valid_mask = cpu_active_mask; unsigned int dest_cpu; @ kernel/sched/core.c:2390 @ static int __set_cpus_allowed_ptr(struct task_struct *p, rq = task_rq_lock(p, &rf); update_rq_clock(rq); - if (p->flags & PF_KTHREAD) { + if (p->flags & PF_KTHREAD || is_migration_disabled(p)) { /* - * Kernel threads are allowed on online && !active CPUs + * Kernel threads are allowed on online && !active CPUs. + * + * Specifically, migration_disabled() tasks must not fail the + * cpumask_any_and_distribute() pick below, esp. so on + * SCA_MIGRATE_ENABLE, otherwise we'll not call + * set_cpus_allowed_common() and actually reset p->cpus_ptr. */ cpu_valid_mask = cpu_online_mask; } @ kernel/sched/core.c:2406 @ static int __set_cpus_allowed_ptr(struct task_struct *p, * Must re-check here, to close a race against __kthread_bind(), * sched_setaffinity() is not guaranteed to observe the flag. */ - if (check && (p->flags & PF_NO_SETAFFINITY)) { + if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { ret = -EINVAL; goto out; } - if (cpumask_equal(&p->cpus_mask, new_mask)) - goto out; + if (!(flags & SCA_MIGRATE_ENABLE)) { + if (cpumask_equal(&p->cpus_mask, new_mask)) + goto out; + + if (WARN_ON_ONCE(p == current && + is_migration_disabled(p) && + !cpumask_test_cpu(task_cpu(p), new_mask))) { + ret = -EBUSY; + goto out; + } + } /* * Picking a ~random cpu helps in cases where we are changing affinity @ kernel/sched/core.c:2434 @ static int __set_cpus_allowed_ptr(struct task_struct *p, goto out; } - do_set_cpus_allowed(p, new_mask); + __do_set_cpus_allowed(p, new_mask, flags); if (p->flags & PF_KTHREAD) { /* @ kernel/sched/core.c:2446 @ static int __set_cpus_allowed_ptr(struct task_struct *p, p->nr_cpus_allowed != 1); } - /* Can the task run on the task's current CPU? If so, we're done */ - if (cpumask_test_cpu(task_cpu(p), new_mask)) - goto out; + return affine_move_task(rq, p, &rf, dest_cpu, flags); - if (task_running(rq, p) || p->state == TASK_WAKING) { - struct migration_arg arg = { p, dest_cpu }; - /* Need help from migration thread: drop lock and wait. */ - task_rq_unlock(rq, p, &rf); - stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); - return 0; - } else if (task_on_rq_queued(p)) { - /* - * OK, since we're going to drop the lock immediately - * afterwards anyway. - */ - rq = move_queued_task(rq, &rf, p, dest_cpu); - } out: task_rq_unlock(rq, p, &rf); @ kernel/sched/core.c:2456 @ static int __set_cpus_allowed_ptr(struct task_struct *p, int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) { - return __set_cpus_allowed_ptr(p, new_mask, false); + return __set_cpus_allowed_ptr(p, new_mask, 0); } EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); @ kernel/sched/core.c:2497 @ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) * Clearly, migrating tasks to offline CPUs is a fairly daft thing. */ WARN_ON_ONCE(!cpu_online(new_cpu)); + + WARN_ON_ONCE(is_migration_disabled(p)); #endif trace_sched_migrate_task(p, new_cpu); @ kernel/sched/core.c:2631 @ int migrate_swap(struct task_struct *cur, struct task_struct *p, } #endif /* CONFIG_NUMA_BALANCING */ +static bool check_task_state(struct task_struct *p, long match_state) +{ + bool match = false; + + raw_spin_lock_irq(&p->pi_lock); + if (p->state == match_state || p->saved_state == match_state) + match = true; + raw_spin_unlock_irq(&p->pi_lock); + + return match; +} + /* * wait_task_inactive - wait for a thread to unschedule. * @ kernel/sched/core.c:2687 @ unsigned long wait_task_inactive(struct task_struct *p, long match_state) * is actually now running somewhere else! */ while (task_running(rq, p)) { - if (match_state && unlikely(p->state != match_state)) + if (match_state && !check_task_state(p, match_state)) return 0; cpu_relax(); } @ kernel/sched/core.c:2702 @ unsigned long wait_task_inactive(struct task_struct *p, long match_state) running = task_running(rq, p); queued = task_on_rq_queued(p); ncsw = 0; - if (!match_state || p->state == match_state) + if (!match_state || p->state == match_state || + p->saved_state == match_state) ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ task_rq_unlock(rq, p, &rf); @ kernel/sched/core.c:2737 @ unsigned long wait_task_inactive(struct task_struct *p, long match_state) ktime_t to = NSEC_PER_SEC / HZ; set_current_state(TASK_UNINTERRUPTIBLE); - schedule_hrtimeout(&to, HRTIMER_MODE_REL); + schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); continue; } @ kernel/sched/core.c:2842 @ static int select_fallback_rq(int cpu, struct task_struct *p) } fallthrough; case possible: + /* + * XXX When called from select_task_rq() we only + * hold p->pi_lock and again violate locking order. + * + * More yuck to audit. + */ do_set_cpus_allowed(p, cpu_possible_mask); state = fail; break; @ kernel/sched/core.c:2882 @ int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) { lockdep_assert_held(&p->pi_lock); - if (p->nr_cpus_allowed > 1) + if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); else cpu = cpumask_any(p->cpus_ptr); @ kernel/sched/core.c:2905 @ int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) void sched_set_stop_task(int cpu, struct task_struct *stop) { + static struct lock_class_key stop_pi_lock; struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; struct task_struct *old_stop = cpu_rq(cpu)->stop; @ kernel/sched/core.c:2921 @ void sched_set_stop_task(int cpu, struct task_struct *stop) sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); stop->sched_class = &stop_sched_class; + + /* + * The PI code calls rt_mutex_setprio() with ->pi_lock held to + * adjust the effective priority of a task. As a result, + * rt_mutex_setprio() can trigger (RT) balancing operations, + * which can then trigger wakeups of the stop thread to push + * around the current task. + * + * The stop task itself will never be part of the PI-chain, it + * never blocks, therefore that ->pi_lock recursion is safe. + * Tell lockdep about this by placing the stop->pi_lock in its + * own class. + */ + lockdep_set_class(&stop->pi_lock, &stop_pi_lock); } cpu_rq(cpu)->stop = stop; @ kernel/sched/core.c:2948 @ void sched_set_stop_task(int cpu, struct task_struct *stop) } } -#else +#else /* CONFIG_SMP */ static inline int __set_cpus_allowed_ptr(struct task_struct *p, - const struct cpumask *new_mask, bool check) + const struct cpumask *new_mask, + u32 flags) { return set_cpus_allowed_ptr(p, new_mask); } -#endif /* CONFIG_SMP */ +static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } + +static inline bool rq_has_pinned_tasks(struct rq *rq) +{ + return false; +} + +#endif /* !CONFIG_SMP */ static void ttwu_stat(struct task_struct *p, int cpu, int wake_flags) @ kernel/sched/core.c:3385 @ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) int cpu, success = 0; preempt_disable(); - if (p == current) { + if (!IS_ENABLED(CONFIG_PREEMPT_RT) && p == current) { /* * We're waking current, this means 'p->on_rq' and 'task_cpu(p) * == smp_processor_id()'. Together this means we can special @ kernel/sched/core.c:3415 @ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) */ raw_spin_lock_irqsave(&p->pi_lock, flags); smp_mb__after_spinlock(); - if (!(p->state & state)) + if (!(p->state & state)) { + /* + * The task might be running due to a spinlock sleeper + * wakeup. Check the saved state and set it to running + * if the wakeup condition is true. + */ + if (!(wake_flags & WF_LOCK_SLEEPER)) { + if (p->saved_state & state) { + p->saved_state = TASK_RUNNING; + success = 1; + } + } goto unlock; + } + /* + * If this is a regular wakeup, then we can unconditionally + * clear the saved state of a "lock sleeper". + */ + if (!(wake_flags & WF_LOCK_SLEEPER)) + p->saved_state = TASK_RUNNING; trace_sched_waking(p); @ kernel/sched/core.c:3623 @ int wake_up_process(struct task_struct *p) } EXPORT_SYMBOL(wake_up_process); +/** + * wake_up_lock_sleeper - Wake up a specific process blocked on a "sleeping lock" + * @p: The process to be woken up. + * + * Same as wake_up_process() above, but wake_flags=WF_LOCK_SLEEPER to indicate + * the nature of the wakeup. + */ +int wake_up_lock_sleeper(struct task_struct *p) +{ + return try_to_wake_up(p, TASK_UNINTERRUPTIBLE, WF_LOCK_SLEEPER); +} + int wake_up_state(struct task_struct *p, unsigned int state) { return try_to_wake_up(p, state, 0); @ kernel/sched/core.c:3688 @ static void __sched_fork(unsigned long clone_flags, struct task_struct *p) init_numa_balancing(clone_flags, p); #ifdef CONFIG_SMP p->wake_entry.u_flags = CSD_TYPE_TTWU; + p->migration_pending = NULL; #endif } @ kernel/sched/core.c:3862 @ int sched_fork(unsigned long clone_flags, struct task_struct *p) p->on_cpu = 0; #endif init_task_preempt_count(p); +#ifdef CONFIG_HAVE_PREEMPT_LAZY + task_thread_info(p)->preempt_lazy_count = 0; +#endif #ifdef CONFIG_SMP plist_node_init(&p->pushable_tasks, MAX_PRIO); RB_CLEAR_NODE(&p->pushable_dl_tasks); @ kernel/sched/core.c:4037 @ fire_sched_out_preempt_notifiers(struct task_struct *curr, #else /* !CONFIG_PREEMPT_NOTIFIERS */ -static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) +static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) +{ +} + +static inline void +fire_sched_out_preempt_notifiers(struct task_struct *curr, + struct task_struct *next) +{ +} + +#endif /* CONFIG_PREEMPT_NOTIFIERS */ + +static inline void prepare_task(struct task_struct *next) +{ +#ifdef CONFIG_SMP + /* + * Claim the task as running, we do this before switching to it + * such that any running task will have this set. + * + * See the ttwu() WF_ON_CPU case and its ordering comment. + */ + WRITE_ONCE(next->on_cpu, 1); +#endif +} + +static inline void finish_task(struct task_struct *prev) +{ +#ifdef CONFIG_SMP + /* + * This must be the very last reference to @prev from this CPU. After + * p->on_cpu is cleared, the task can be moved to a different CPU. We + * must ensure this doesn't happen until the switch is completely + * finished. + * + * In particular, the load of prev->state in finish_task_switch() must + * happen before this. + * + * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). + */ + smp_store_release(&prev->on_cpu, 0); +#endif +} + +#ifdef CONFIG_SMP + +static void do_balance_callbacks(struct rq *rq, struct callback_head *head) +{ + void (*func)(struct rq *rq); + struct callback_head *next; + + lockdep_assert_held(&rq->lock); + + while (head) { + func = (void (*)(struct rq *))head->func; + next = head->next; + head->next = NULL; + head = next; + + func(rq); + } +} + +static inline struct callback_head *splice_balance_callbacks(struct rq *rq) +{ + struct callback_head *head = rq->balance_callback; + + lockdep_assert_held(&rq->lock); + if (head) { + rq->balance_callback = NULL; + rq->balance_flags &= ~BALANCE_WORK; + } + + return head; +} + +static void __balance_callbacks(struct rq *rq) +{ + do_balance_callbacks(rq, splice_balance_callbacks(rq)); +} + +static inline void balance_callbacks(struct rq *rq, struct callback_head *head) +{ + unsigned long flags; + + if (unlikely(head)) { + raw_spin_lock_irqsave(&rq->lock, flags); + do_balance_callbacks(rq, head); + raw_spin_unlock_irqrestore(&rq->lock, flags); + } +} + +static void balance_push(struct rq *rq); + +static inline void balance_switch(struct rq *rq) +{ + if (likely(!rq->balance_flags)) + return; + + if (rq->balance_flags & BALANCE_PUSH) { + balance_push(rq); + return; + } + + __balance_callbacks(rq); +} + +#else + +static inline void __balance_callbacks(struct rq *rq) { } -static inline void -fire_sched_out_preempt_notifiers(struct task_struct *curr, - struct task_struct *next) +static inline struct callback_head *splice_balance_callbacks(struct rq *rq) { + return NULL; } -#endif /* CONFIG_PREEMPT_NOTIFIERS */ - -static inline void prepare_task(struct task_struct *next) +static inline void balance_callbacks(struct rq *rq, struct callback_head *head) { -#ifdef CONFIG_SMP - /* - * Claim the task as running, we do this before switching to it - * such that any running task will have this set. - * - * See the ttwu() WF_ON_CPU case and its ordering comment. - */ - WRITE_ONCE(next->on_cpu, 1); -#endif } -static inline void finish_task(struct task_struct *prev) +static inline void balance_switch(struct rq *rq) { -#ifdef CONFIG_SMP - /* - * This must be the very last reference to @prev from this CPU. After - * p->on_cpu is cleared, the task can be moved to a different CPU. We - * must ensure this doesn't happen until the switch is completely - * finished. - * - * In particular, the load of prev->state in finish_task_switch() must - * happen before this. - * - * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). - */ - smp_store_release(&prev->on_cpu, 0); -#endif } +#endif + static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) { @ kernel/sched/core.c:4189 @ static inline void finish_lock_switch(struct rq *rq) * prev into current: */ spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); + balance_switch(rq); raw_spin_unlock_irq(&rq->lock); } @ kernel/sched/core.c:4205 @ static inline void finish_lock_switch(struct rq *rq) # define finish_arch_post_lock_switch() do { } while (0) #endif +static inline void kmap_local_sched_out(void) +{ +#ifdef CONFIG_KMAP_LOCAL + if (unlikely(current->kmap_ctrl.idx)) + __kmap_local_sched_out(); +#endif +} + +static inline void kmap_local_sched_in(void) +{ +#ifdef CONFIG_KMAP_LOCAL + if (unlikely(current->kmap_ctrl.idx)) + __kmap_local_sched_in(); +#endif +} + /** * prepare_task_switch - prepare to switch tasks * @rq: the runqueue preparing to switch @ kernel/sched/core.c:4243 @ prepare_task_switch(struct rq *rq, struct task_struct *prev, perf_event_task_sched_out(prev, next); rseq_preempt(prev); fire_sched_out_preempt_notifiers(prev, next); + kmap_local_sched_out(); prepare_task(next); prepare_arch_switch(next); } @ kernel/sched/core.c:4310 @ static struct rq *finish_task_switch(struct task_struct *prev) finish_lock_switch(rq); finish_arch_post_lock_switch(); kcov_finish_switch(current); + kmap_local_sched_in(); fire_sched_in_preempt_notifiers(current); /* @ kernel/sched/core.c:4325 @ static struct rq *finish_task_switch(struct task_struct *prev) * provided by mmdrop(), * - a sync_core for SYNC_CORE. */ + /* + * We use mmdrop_delayed() here so we don't have to do the + * full __mmdrop() when we are the last user. + */ if (mm) { membarrier_mm_sync_core_before_usermode(mm); - mmdrop(mm); + mmdrop_delayed(mm); } if (unlikely(prev_state == TASK_DEAD)) { if (prev->sched_class->task_dead) prev->sched_class->task_dead(prev); - /* - * Remove function-return probe instances associated with this - * task and put them back on the free list. - */ - kprobe_flush_task(prev); - - /* Task is done with its stack. */ - put_task_stack(prev); - put_task_struct_rcu_user(prev); } @ kernel/sched/core.c:4344 @ static struct rq *finish_task_switch(struct task_struct *prev) return rq; } -#ifdef CONFIG_SMP - -/* rq->lock is NOT held, but preemption is disabled */ -static void __balance_callback(struct rq *rq) -{ - struct callback_head *head, *next; - void (*func)(struct rq *rq); - unsigned long flags; - - raw_spin_lock_irqsave(&rq->lock, flags); - head = rq->balance_callback; - rq->balance_callback = NULL; - while (head) { - func = (void (*)(struct rq *))head->func; - next = head->next; - head->next = NULL; - head = next; - - func(rq); - } - raw_spin_unlock_irqrestore(&rq->lock, flags); -} - -static inline void balance_callback(struct rq *rq) -{ - if (unlikely(rq->balance_callback)) - __balance_callback(rq); -} - -#else - -static inline void balance_callback(struct rq *rq) -{ -} - -#endif - /** * schedule_tail - first thing a freshly forked thread must call. * @prev: the thread we just switched away from. @ kernel/sched/core.c:4363 @ asmlinkage __visible void schedule_tail(struct task_struct *prev) */ rq = finish_task_switch(prev); - balance_callback(rq); preempt_enable(); if (current->set_child_tid) @ kernel/sched/core.c:5057 @ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) * * WARNING: must be called with preemption disabled! */ -static void __sched notrace __schedule(bool preempt) +static void __sched notrace __schedule(bool preempt, bool spinning_lock) { struct task_struct *prev, *next; unsigned long *switch_count; @ kernel/sched/core.c:5110 @ static void __sched notrace __schedule(bool preempt) * - ptrace_{,un}freeze_traced() can change ->state underneath us. */ prev_state = prev->state; - if (!preempt && prev_state) { + if ((!preempt || spinning_lock) && prev_state) { if (signal_pending_state(prev_state, prev)) { prev->state = TASK_RUNNING; } else { @ kernel/sched/core.c:5145 @ static void __sched notrace __schedule(bool preempt) next = pick_next_task(rq, prev, &rf); clear_tsk_need_resched(prev); + clear_tsk_need_resched_lazy(prev); clear_preempt_need_resched(); if (likely(prev != next)) { @ kernel/sched/core.c:5171 @ static void __sched notrace __schedule(bool preempt) */ ++*switch_count; + migrate_disable_switch(rq, prev); psi_sched_switch(prev, next, !task_on_rq_queued(prev)); trace_sched_switch(preempt, prev, next); @ kernel/sched/core.c:5180 @ static void __sched notrace __schedule(bool preempt) rq = context_switch(rq, prev, next, &rf); } else { rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); - rq_unlock_irq(rq, &rf); - } - balance_callback(rq); + rq_unpin_lock(rq, &rf); + __balance_callbacks(rq); + raw_spin_unlock_irq(&rq->lock); + } } void __noreturn do_task_dead(void) @ kernel/sched/core.c:5195 @ void __noreturn do_task_dead(void) /* Tell freezer to ignore us: */ current->flags |= PF_NOFREEZE; - __schedule(false); + __schedule(false, false); BUG(); /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ @ kernel/sched/core.c:5228 @ static inline void sched_submit_work(struct task_struct *tsk) preempt_enable_no_resched(); } - if (tsk_is_pi_blocked(tsk)) - return; - /* * If we are going to sleep and we have plugged IO queued, * make sure to submit it to avoid deadlocks. @ kernel/sched/core.c:5253 @ asmlinkage __visible void __sched schedule(void) sched_submit_work(tsk); do { preempt_disable(); - __schedule(false); + __schedule(false, false); sched_preempt_enable_no_resched(); } while (need_resched()); sched_update_worker(tsk); @ kernel/sched/core.c:5281 @ void __sched schedule_idle(void) */ WARN_ON_ONCE(current->state); do { - __schedule(false); + __schedule(false, false); } while (need_resched()); } @ kernel/sched/core.c:5334 @ static void __sched notrace preempt_schedule_common(void) */ preempt_disable_notrace(); preempt_latency_start(1); - __schedule(true); + __schedule(true, false); preempt_latency_stop(1); preempt_enable_no_resched_notrace(); @ kernel/sched/core.c:5345 @ static void __sched notrace preempt_schedule_common(void) } while (need_resched()); } +#ifdef CONFIG_PREEMPT_LAZY +/* + * If TIF_NEED_RESCHED is then we allow to be scheduled away since this is + * set by a RT task. Oterwise we try to avoid beeing scheduled out as long as + * preempt_lazy_count counter >0. + */ +static __always_inline int preemptible_lazy(void) +{ + if (test_thread_flag(TIF_NEED_RESCHED)) + return 1; + if (current_thread_info()->preempt_lazy_count) + return 0; + return 1; +} + +#else + +static inline int preemptible_lazy(void) +{ + return 1; +} + +#endif + #ifdef CONFIG_PREEMPTION /* * This is the entry point to schedule() from in-kernel preemption @ kernel/sched/core.c:5382 @ asmlinkage __visible void __sched notrace preempt_schedule(void) */ if (likely(!preemptible())) return; - + if (!preemptible_lazy()) + return; preempt_schedule_common(); } NOKPROBE_SYMBOL(preempt_schedule); EXPORT_SYMBOL(preempt_schedule); +#ifdef CONFIG_PREEMPT_RT +void __sched notrace preempt_schedule_lock(void) +{ + do { + preempt_disable(); + __schedule(true, true); + sched_preempt_enable_no_resched(); + } while (need_resched()); +} +NOKPROBE_SYMBOL(preempt_schedule_lock); +EXPORT_SYMBOL(preempt_schedule_lock); +#endif + /** * preempt_schedule_notrace - preempt_schedule called by tracing * @ kernel/sched/core.c:5423 @ asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) if (likely(!preemptible())) return; + if (!preemptible_lazy()) + return; + do { /* * Because the function tracer can trace preempt_count_sub() @ kernel/sched/core.c:5448 @ asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) * an infinite recursion. */ prev_ctx = exception_enter(); - __schedule(true); + __schedule(true, false); exception_exit(prev_ctx); preempt_latency_stop(1); @ kernel/sched/core.c:5477 @ asmlinkage __visible void __sched preempt_schedule_irq(void) do { preempt_disable(); local_irq_enable(); - __schedule(true); + __schedule(true, false); local_irq_disable(); sched_preempt_enable_no_resched(); } while (need_resched()); @ kernel/sched/core.c:5643 @ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) out_unlock: /* Avoid rq from going away on us: */ preempt_disable(); - __task_rq_unlock(rq, &rf); - balance_callback(rq); + rq_unpin_lock(rq, &rf); + __balance_callbacks(rq); + raw_spin_unlock(&rq->lock); + preempt_enable(); } #else @ kernel/sched/core.c:5890 @ static int __sched_setscheduler(struct task_struct *p, int oldpolicy = -1, policy = attr->sched_policy; int retval, oldprio, newprio, queued, running; const struct sched_class *prev_class; + struct callback_head *head; struct rq_flags rf; int reset_on_fork; int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; @ kernel/sched/core.c:6133 @ static int __sched_setscheduler(struct task_struct *p, /* Avoid rq from going away on us: */ preempt_disable(); + head = splice_balance_callbacks(rq); task_rq_unlock(rq, p, &rf); if (pi) { @ kernel/sched/core.c:6142 @ static int __sched_setscheduler(struct task_struct *p, } /* Run balance callbacks after we've adjusted the PI chain: */ - balance_callback(rq); + balance_callbacks(rq, head); preempt_enable(); return 0; @ kernel/sched/core.c:6637 @ long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) } #endif again: - retval = __set_cpus_allowed_ptr(p, new_mask, true); + retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK); if (!retval) { cpuset_cpus_allowed(p, cpus_allowed); @ kernel/sched/core.c:7213 @ void __init init_idle(struct task_struct *idle, int cpu) * * And since this is boot we can forgo the serialization. */ - set_cpus_allowed_common(idle, cpumask_of(cpu)); + set_cpus_allowed_common(idle, cpumask_of(cpu), 0); #endif /* * We're having a chicken and egg problem, even though we are @ kernel/sched/core.c:7240 @ void __init init_idle(struct task_struct *idle, int cpu) /* Set the preempt count _outside_ the spinlocks! */ init_idle_preempt_count(idle, cpu); - +#ifdef CONFIG_HAVE_PREEMPT_LAZY + task_thread_info(idle)->preempt_lazy_count = 0; +#endif /* * The idle tasks have their own, simple scheduling class: */ @ kernel/sched/core.c:7347 @ void sched_setnuma(struct task_struct *p, int nid) #endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_HOTPLUG_CPU + /* * Ensure that the idle task is using init_mm right before its CPU goes * offline. @ kernel/sched/core.c:7367 @ void idle_task_exit(void) /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ } -/* - * Since this CPU is going 'away' for a while, fold any nr_active delta - * we might have. Assumes we're called after migrate_tasks() so that the - * nr_active count is stable. We need to take the teardown thread which - * is calling this into account, so we hand in adjust = 1 to the load - * calculation. - * - * Also see the comment "Global load-average calculations". - */ -static void calc_load_migrate(struct rq *rq) +static int __balance_push_cpu_stop(void *arg) { - long delta = calc_load_fold_active(rq, 1); - if (delta) - atomic_long_add(delta, &calc_load_tasks); -} + struct task_struct *p = arg; + struct rq *rq = this_rq(); + struct rq_flags rf; + int cpu; -static struct task_struct *__pick_migrate_task(struct rq *rq) -{ - const struct sched_class *class; - struct task_struct *next; + raw_spin_lock_irq(&p->pi_lock); + rq_lock(rq, &rf); - for_each_class(class) { - next = class->pick_next_task(rq); - if (next) { - next->sched_class->put_prev_task(rq, next); - return next; - } + update_rq_clock(rq); + + if (task_rq(p) == rq && task_on_rq_queued(p)) { + cpu = select_fallback_rq(rq->cpu, p); + rq = __migrate_task(rq, &rf, p, cpu); } - /* The idle class should always have a runnable task */ - BUG(); + rq_unlock(rq, &rf); + raw_spin_unlock_irq(&p->pi_lock); + + put_task_struct(p); + + return 0; } +static DEFINE_PER_CPU(struct cpu_stop_work, push_work); + /* - * Migrate all tasks from the rq, sleeping tasks will be migrated by - * try_to_wake_up()->select_task_rq(). - * - * Called with rq->lock held even though we'er in stop_machine() and - * there's no concurrency possible, we hold the required locks anyway - * because of lock validation efforts. + * Ensure we only run per-cpu kthreads once the CPU goes !active. */ -static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) +static void balance_push(struct rq *rq) { - struct rq *rq = dead_rq; - struct task_struct *next, *stop = rq->stop; - struct rq_flags orf = *rf; - int dest_cpu; + struct task_struct *push_task = rq->curr; + + lockdep_assert_held(&rq->lock); + SCHED_WARN_ON(rq->cpu != smp_processor_id()); /* - * Fudge the rq selection such that the below task selection loop - * doesn't get stuck on the currently eligible stop task. - * - * We're currently inside stop_machine() and the rq is either stuck - * in the stop_machine_cpu_stop() loop, or we're executing this code, - * either way we should never end up calling schedule() until we're - * done here. + * Both the cpu-hotplug and stop task are in this case and are + * required to complete the hotplug process. */ - rq->stop = NULL; + if (is_per_cpu_kthread(push_task) || is_migration_disabled(push_task)) { + /* + * If this is the idle task on the outgoing CPU try to wake + * up the hotplug control thread which might wait for the + * last task to vanish. The rcuwait_active() check is + * accurate here because the waiter is pinned on this CPU + * and can't obviously be running in parallel. + * + * On RT kernels this also has to check whether there are + * pinned and scheduled out tasks on the runqueue. They + * need to leave the migrate disabled section first. + */ + if (!rq->nr_running && !rq_has_pinned_tasks(rq) && + rcuwait_active(&rq->hotplug_wait)) { + raw_spin_unlock(&rq->lock); + rcuwait_wake_up(&rq->hotplug_wait); + raw_spin_lock(&rq->lock); + } + return; + } + get_task_struct(push_task); /* - * put_prev_task() and pick_next_task() sched - * class method both need to have an up-to-date - * value of rq->clock[_task] + * Temporarily drop rq->lock such that we can wake-up the stop task. + * Both preemption and IRQs are still disabled. */ - update_rq_clock(rq); + raw_spin_unlock(&rq->lock); + stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, + this_cpu_ptr(&push_work)); + /* + * At this point need_resched() is true and we'll take the loop in + * schedule(). The next pick is obviously going to be the stop task + * which is_per_cpu_kthread() and will push this task away. + */ + raw_spin_lock(&rq->lock); +} - for (;;) { - /* - * There's this thread running, bail when that's the only - * remaining thread: - */ - if (rq->nr_running == 1) - break; +static void balance_push_set(int cpu, bool on) +{ + struct rq *rq = cpu_rq(cpu); + struct rq_flags rf; - next = __pick_migrate_task(rq); + rq_lock_irqsave(rq, &rf); + if (on) + rq->balance_flags |= BALANCE_PUSH; + else + rq->balance_flags &= ~BALANCE_PUSH; + rq_unlock_irqrestore(rq, &rf); +} - /* - * Rules for changing task_struct::cpus_mask are holding - * both pi_lock and rq->lock, such that holding either - * stabilizes the mask. - * - * Drop rq->lock is not quite as disastrous as it usually is - * because !cpu_active at this point, which means load-balance - * will not interfere. Also, stop-machine. - */ - rq_unlock(rq, rf); - raw_spin_lock(&next->pi_lock); - rq_relock(rq, rf); +/* + * Invoked from a CPUs hotplug control thread after the CPU has been marked + * inactive. All tasks which are not per CPU kernel threads are either + * pushed off this CPU now via balance_push() or placed on a different CPU + * during wakeup. Wait until the CPU is quiescent. + */ +static void balance_hotplug_wait(void) +{ + struct rq *rq = this_rq(); - /* - * Since we're inside stop-machine, _nothing_ should have - * changed the task, WARN if weird stuff happened, because in - * that case the above rq->lock drop is a fail too. - */ - if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { - raw_spin_unlock(&next->pi_lock); - continue; - } + rcuwait_wait_event(&rq->hotplug_wait, + rq->nr_running == 1 && !rq_has_pinned_tasks(rq), + TASK_UNINTERRUPTIBLE); +} - /* Find suitable destination for @next, with force if needed. */ - dest_cpu = select_fallback_rq(dead_rq->cpu, next); - rq = __migrate_task(rq, rf, next, dest_cpu); - if (rq != dead_rq) { - rq_unlock(rq, rf); - rq = dead_rq; - *rf = orf; - rq_relock(rq, rf); - } - raw_spin_unlock(&next->pi_lock); - } +#else + +static inline void balance_push(struct rq *rq) +{ +} - rq->stop = stop; +static inline void balance_push_set(int cpu, bool on) +{ +} + +static inline void balance_hotplug_wait(void) +{ } + #endif /* CONFIG_HOTPLUG_CPU */ void set_rq_online(struct rq *rq) @ kernel/sched/core.c:7572 @ int sched_cpu_activate(unsigned int cpu) struct rq *rq = cpu_rq(cpu); struct rq_flags rf; + balance_push_set(cpu, false); + #ifdef CONFIG_SCHED_SMT /* * When going up, increment the number of cores with SMT present. @ kernel/sched/core.c:7609 @ int sched_cpu_activate(unsigned int cpu) int sched_cpu_deactivate(unsigned int cpu) { + struct rq *rq = cpu_rq(cpu); + struct rq_flags rf; int ret; set_cpu_active(cpu, false); @ kernel/sched/core.c:7623 @ int sched_cpu_deactivate(unsigned int cpu) */ synchronize_rcu(); + balance_push_set(cpu, true); + + rq_lock_irqsave(rq, &rf); + if (rq->rd) { + update_rq_clock(rq); + BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); + set_rq_offline(rq); + } + rq_unlock_irqrestore(rq, &rf); + #ifdef CONFIG_SCHED_SMT /* * When going down, decrement the number of cores with SMT present. @ kernel/sched/core.c:7646 @ int sched_cpu_deactivate(unsigned int cpu) ret = cpuset_cpu_inactive(cpu); if (ret) { + balance_push_set(cpu, false); set_cpu_active(cpu, true); return ret; } @ kernel/sched/core.c:7670 @ int sched_cpu_starting(unsigned int cpu) } #ifdef CONFIG_HOTPLUG_CPU + +/* + * Invoked immediately before the stopper thread is invoked to bring the + * CPU down completely. At this point all per CPU kthreads except the + * hotplug thread (current) and the stopper thread (inactive) have been + * either parked or have been unbound from the outgoing CPU. Ensure that + * any of those which might be on the way out are gone. + * + * If after this point a bound task is being woken on this CPU then the + * responsible hotplug callback has failed to do it's job. + * sched_cpu_dying() will catch it with the appropriate fireworks. + */ +int sched_cpu_wait_empty(unsigned int cpu) +{ + balance_hotplug_wait(); + return 0; +} + +/* + * Since this CPU is going 'away' for a while, fold any nr_active delta we + * might have. Called from the CPU stopper task after ensuring that the + * stopper is the last running task on the CPU, so nr_active count is + * stable. We need to take the teardown thread which is calling this into + * account, so we hand in adjust = 1 to the load calculation. + * + * Also see the comment "Global load-average calculations". + */ +static void calc_load_migrate(struct rq *rq) +{ + long delta = calc_load_fold_active(rq, 1); + + if (delta) + atomic_long_add(delta, &calc_load_tasks); +} + int sched_cpu_dying(unsigned int cpu) { struct rq *rq = cpu_rq(cpu); @ kernel/sched/core.c:7714 @ int sched_cpu_dying(unsigned int cpu) sched_tick_stop(cpu); rq_lock_irqsave(rq, &rf); - if (rq->rd) { - BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); - set_rq_offline(rq); - } - migrate_tasks(rq, &rf); - BUG_ON(rq->nr_running != 1); + BUG_ON(rq->nr_running != 1 || rq_has_pinned_tasks(rq)); rq_unlock_irqrestore(rq, &rf); calc_load_migrate(rq); @ kernel/sched/core.c:7921 @ void __init sched_init(void) rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func); #endif +#ifdef CONFIG_HOTPLUG_CPU + rcuwait_init(&rq->hotplug_wait); +#endif #endif /* CONFIG_SMP */ hrtick_rq_init(rq); atomic_set(&rq->nr_iowait, 0); @ kernel/sched/core.c:7964 @ void __init sched_init(void) #ifdef CONFIG_DEBUG_ATOMIC_SLEEP static inline int preempt_count_equals(int preempt_offset) { - int nested = preempt_count() + rcu_preempt_depth(); + int nested = preempt_count() + sched_rcu_preempt_depth(); return (nested == preempt_offset); } @ kernel/sched/core.c:8061 @ void __cant_sleep(const char *file, int line, int preempt_offset) add_taint(TAINT_WARN, LOCKDEP_STILL_OK); } EXPORT_SYMBOL_GPL(__cant_sleep); + +#ifdef CONFIG_SMP +void __cant_migrate(const char *file, int line) +{ + static unsigned long prev_jiffy; + + if (irqs_disabled()) + return; + + if (is_migration_disabled(current)) + return; + + if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) + return; + + if (preempt_count() > 0) + return; + + if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) + return; + prev_jiffy = jiffies; + + pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); + pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", + in_atomic(), irqs_disabled(), is_migration_disabled(current), + current->pid, current->comm); + + debug_show_held_locks(current); + dump_stack(); + add_taint(TAINT_WARN, LOCKDEP_STILL_OK); +} +EXPORT_SYMBOL_GPL(__cant_migrate); +#endif #endif #ifdef CONFIG_MAGIC_SYSRQ @ kernel/sched/cpudeadline.c:123 @ int cpudl_find(struct cpudl *cp, struct task_struct *p, const struct sched_dl_entity *dl_se = &p->dl; if (later_mask && - cpumask_and(later_mask, cp->free_cpus, p->cpus_ptr)) { + cpumask_and(later_mask, cp->free_cpus, &p->cpus_mask)) { unsigned long cap, max_cap = 0; int cpu, max_cpu = -1; @ kernel/sched/cpudeadline.c:154 @ int cpudl_find(struct cpudl *cp, struct task_struct *p, WARN_ON(best_cpu != -1 && !cpu_present(best_cpu)); - if (cpumask_test_cpu(best_cpu, p->cpus_ptr) && + if (cpumask_test_cpu(best_cpu, &p->cpus_mask) && dl_time_before(dl_se->deadline, cp->elements[0].dl)) { if (later_mask) cpumask_set_cpu(best_cpu, later_mask); @ kernel/sched/cpupri.c:76 @ static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p, if (skip) return 0; - if (cpumask_any_and(p->cpus_ptr, vec->mask) >= nr_cpu_ids) + if (cpumask_any_and(&p->cpus_mask, vec->mask) >= nr_cpu_ids) return 0; if (lowest_mask) { - cpumask_and(lowest_mask, p->cpus_ptr, vec->mask); + cpumask_and(lowest_mask, &p->cpus_mask, vec->mask); /* * We have to ensure that we have at least one bit @ kernel/sched/cputime.c:47 @ static void irqtime_account_delta(struct irqtime *irqtime, u64 delta, } /* - * Called before incrementing preempt_count on {soft,}irq_enter + * Called after incrementing preempt_count on {soft,}irq_enter * and before decrementing preempt_count on {soft,}irq_exit. */ -void irqtime_account_irq(struct task_struct *curr) +void irqtime_account_irq(struct task_struct *curr, unsigned int offset) { struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); + unsigned int pc; s64 delta; int cpu; @ kernel/sched/cputime.c:63 @ void irqtime_account_irq(struct task_struct *curr) cpu = smp_processor_id(); delta = sched_clock_cpu(cpu) - irqtime->irq_start_time; irqtime->irq_start_time += delta; + pc = irq_count() - offset; /* * We do not account for softirq time from ksoftirqd here. @ kernel/sched/cputime.c:71 @ void irqtime_account_irq(struct task_struct *curr) * in that case, so as not to confuse scheduler with a special task * that do not consume any time, but still wants to run. */ - if (hardirq_count()) + if (pc & HARDIRQ_MASK) irqtime_account_delta(irqtime, delta, CPUTIME_IRQ); - else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) + else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd()) irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ); } -EXPORT_SYMBOL_GPL(irqtime_account_irq); static u64 irqtime_tick_accounted(u64 maxtime) { @ kernel/sched/cputime.c:422 @ void vtime_task_switch(struct task_struct *prev) } # endif -/* - * Archs that account the whole time spent in the idle task - * (outside irq) as idle time can rely on this and just implement - * vtime_account_kernel() and vtime_account_idle(). Archs that - * have other meaning of the idle time (s390 only includes the - * time spent by the CPU when it's in low power mode) must override - * vtime_account(). - */ -#ifndef __ARCH_HAS_VTIME_ACCOUNT -void vtime_account_irq_enter(struct task_struct *tsk) +void vtime_account_irq(struct task_struct *tsk, unsigned int offset) { - if (!in_interrupt() && is_idle_task(tsk)) + unsigned int pc = irq_count() - offset; + + if (pc & HARDIRQ_OFFSET) { + vtime_account_hardirq(tsk); + } else if (pc & SOFTIRQ_OFFSET) { + vtime_account_softirq(tsk); + } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) && + is_idle_task(tsk)) { vtime_account_idle(tsk); - else + } else { vtime_account_kernel(tsk); + } } -EXPORT_SYMBOL_GPL(vtime_account_irq_enter); -#endif /* __ARCH_HAS_VTIME_ACCOUNT */ void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, u64 *ut, u64 *st) @ kernel/sched/deadline.c:568 @ static int push_dl_task(struct rq *rq); static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) { - return dl_task(prev); + return rq->online && dl_task(prev); } static DEFINE_PER_CPU(struct callback_head, dl_push_head); @ kernel/sched/deadline.c:1922 @ static void task_fork_dl(struct task_struct *p) static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) { if (!task_running(rq, p) && - cpumask_test_cpu(cpu, p->cpus_ptr)) + cpumask_test_cpu(cpu, &p->cpus_mask)) return 1; return 0; } @ kernel/sched/deadline.c:2012 @ static int find_later_rq(struct task_struct *task) return this_cpu; } - best_cpu = cpumask_first_and(later_mask, - sched_domain_span(sd)); + best_cpu = cpumask_any_and_distribute(later_mask, + sched_domain_span(sd)); /* * Last chance: if a CPU being in both later_mask * and current sd span is valid, that becomes our @ kernel/sched/deadline.c:2035 @ static int find_later_rq(struct task_struct *task) if (this_cpu != -1) return this_cpu; - cpu = cpumask_any(later_mask); + cpu = cpumask_any_distribute(later_mask); if (cpu < nr_cpu_ids) return cpu; @ kernel/sched/deadline.c:2072 @ static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) /* Retry if something changed. */ if (double_lock_balance(rq, later_rq)) { if (unlikely(task_rq(task) != rq || - !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) || + !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) || task_running(rq, task) || !dl_task(task) || !task_on_rq_queued(task))) { @ kernel/sched/deadline.c:2139 @ static int push_dl_task(struct rq *rq) return 0; retry: + if (is_migration_disabled(next_task)) + return 0; + if (WARN_ON(next_task == rq->curr)) return 0; @ kernel/sched/deadline.c:2219 @ static void push_dl_tasks(struct rq *rq) static void pull_dl_task(struct rq *this_rq) { int this_cpu = this_rq->cpu, cpu; - struct task_struct *p; + struct task_struct *p, *push_task; bool resched = false; struct rq *src_rq; u64 dmin = LONG_MAX; @ kernel/sched/deadline.c:2249 @ static void pull_dl_task(struct rq *this_rq) continue; /* Might drop this_rq->lock */ + push_task = NULL; double_lock_balance(this_rq, src_rq); /* @ kernel/sched/deadline.c:2281 @ static void pull_dl_task(struct rq *this_rq) src_rq->curr->dl.deadline)) goto skip; - resched = true; - - deactivate_task(src_rq, p, 0); - set_task_cpu(p, this_cpu); - activate_task(this_rq, p, 0); - dmin = p->dl.deadline; + if (is_migration_disabled(p)) { + trace_sched_migrate_pull_tp(p); + push_task = get_push_task(src_rq); + } else { + deactivate_task(src_rq, p, 0); + set_task_cpu(p, this_cpu); + activate_task(this_rq, p, 0); + dmin = p->dl.deadline; + resched = true; + } /* Is there any other task even earlier? */ } skip: double_unlock_balance(this_rq, src_rq); + + if (push_task) { + raw_spin_unlock(&this_rq->lock); + stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, + push_task, &src_rq->push_work); + raw_spin_lock(&this_rq->lock); + } } if (resched) @ kernel/sched/deadline.c:2326 @ static void task_woken_dl(struct rq *rq, struct task_struct *p) } static void set_cpus_allowed_dl(struct task_struct *p, - const struct cpumask *new_mask) + const struct cpumask *new_mask, + u32 flags) { struct root_domain *src_rd; struct rq *rq; @ kernel/sched/deadline.c:2356 @ static void set_cpus_allowed_dl(struct task_struct *p, raw_spin_unlock(&src_dl_b->lock); } - set_cpus_allowed_common(p, new_mask); + set_cpus_allowed_common(p, new_mask, flags); } /* Assumes rq->lock is held */ @ kernel/sched/deadline.c:2551 @ const struct sched_class dl_sched_class .rq_online = rq_online_dl, .rq_offline = rq_offline_dl, .task_woken = task_woken_dl, + .find_lock_rq = find_lock_later_rq, #endif .task_tick = task_tick_dl, @ kernel/sched/fair.c:4400 @ check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) ideal_runtime = sched_slice(cfs_rq, curr); delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; if (delta_exec > ideal_runtime) { - resched_curr(rq_of(cfs_rq)); + resched_curr_lazy(rq_of(cfs_rq)); /* * The current task ran long enough, ensure it doesn't get * re-elected due to buddy favours. @ kernel/sched/fair.c:4424 @ check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) return; if (delta > ideal_runtime) - resched_curr(rq_of(cfs_rq)); + resched_curr_lazy(rq_of(cfs_rq)); } static void @ kernel/sched/fair.c:4567 @ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) * validating it and just reschedule. */ if (queued) { - resched_curr(rq_of(cfs_rq)); + resched_curr_lazy(rq_of(cfs_rq)); return; } /* @ kernel/sched/fair.c:4704 @ static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) * hierarchy can be throttled */ if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) - resched_curr(rq_of(cfs_rq)); + resched_curr_lazy(rq_of(cfs_rq)); } static __always_inline @ kernel/sched/fair.c:5439 @ static void hrtick_start_fair(struct rq *rq, struct task_struct *p) if (delta < 0) { if (rq->curr == p) - resched_curr(rq); + resched_curr_lazy(rq); return; } hrtick_start(rq, delta); @ kernel/sched/fair.c:7020 @ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ return; preempt: - resched_curr(rq); + resched_curr_lazy(rq); /* * Only set the backward buddy when the current task is still * on the rq. This can happen when a wakeup gets interleaved @ kernel/sched/fair.c:10780 @ static void task_fork_fair(struct task_struct *p) * 'current' within the tree based on its new key value. */ swap(curr->vruntime, se->vruntime); - resched_curr(rq); + resched_curr_lazy(rq); } se->vruntime -= cfs_rq->min_vruntime; @ kernel/sched/fair.c:10807 @ prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) */ if (rq->curr == p) { if (p->prio > oldprio) - resched_curr(rq); + resched_curr_lazy(rq); } else check_preempt_curr(rq, p, 0); } @ kernel/sched/features.h:48 @ SCHED_FEAT(DOUBLE_TICK, false) */ SCHED_FEAT(NONTASK_CAPACITY, true) +#ifdef CONFIG_PREEMPT_RT +SCHED_FEAT(TTWU_QUEUE, false) +# ifdef CONFIG_PREEMPT_LAZY +SCHED_FEAT(PREEMPT_LAZY, true) +# endif +#else + /* * Queue remote wakeups on the target CPU and process them * using the scheduler IPI. Reduces rq->lock contention/bounces. */ SCHED_FEAT(TTWU_QUEUE, true) +#endif /* * When doing wakeups, attempt to limit superfluous scans of the LLC domain. @ kernel/sched/rt.c:268 @ static void pull_rt_task(struct rq *this_rq); static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) { /* Try to pull RT tasks here if we lower this rq's prio */ - return rq->rt.highest_prio.curr > prev->prio; + return rq->online && rq->rt.highest_prio.curr > prev->prio; } static inline int rt_overloaded(struct rq *rq) @ kernel/sched/rt.c:1661 @ static void put_prev_task_rt(struct rq *rq, struct task_struct *p) static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) { if (!task_running(rq, p) && - cpumask_test_cpu(cpu, p->cpus_ptr)) + cpumask_test_cpu(cpu, &p->cpus_mask)) return 1; return 0; @ kernel/sched/rt.c:1755 @ static int find_lowest_rq(struct task_struct *task) return this_cpu; } - best_cpu = cpumask_first_and(lowest_mask, - sched_domain_span(sd)); + best_cpu = cpumask_any_and_distribute(lowest_mask, + sched_domain_span(sd)); if (best_cpu < nr_cpu_ids) { rcu_read_unlock(); return best_cpu; @ kernel/sched/rt.c:1773 @ static int find_lowest_rq(struct task_struct *task) if (this_cpu != -1) return this_cpu; - cpu = cpumask_any(lowest_mask); + cpu = cpumask_any_distribute(lowest_mask); if (cpu < nr_cpu_ids) return cpu; @ kernel/sched/rt.c:1814 @ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) * Also make sure that it wasn't scheduled on its rq. */ if (unlikely(task_rq(task) != rq || - !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) || + !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) || task_running(rq, task) || !rt_task(task) || !task_on_rq_queued(task))) { @ kernel/sched/rt.c:1862 @ static struct task_struct *pick_next_pushable_task(struct rq *rq) * running task can migrate over to a CPU that is running a task * of lesser priority. */ -static int push_rt_task(struct rq *rq) +static int push_rt_task(struct rq *rq, bool pull) { struct task_struct *next_task; struct rq *lowest_rq; @ kernel/sched/rt.c:1876 @ static int push_rt_task(struct rq *rq) return 0; retry: + if (is_migration_disabled(next_task)) { + struct task_struct *push_task = NULL; + int cpu; + + if (!pull) + return 0; + + trace_sched_migrate_pull_tp(next_task); + + if (rq->push_busy) + return 0; + + cpu = find_lowest_rq(rq->curr); + if (cpu == -1 || cpu == rq->cpu) + return 0; + + /* + * Given we found a CPU with lower priority than @next_task, + * therefore it should be running. However we cannot migrate it + * to this other CPU, instead attempt to push the current + * running task on this CPU away. + */ + push_task = get_push_task(rq); + if (push_task) { + raw_spin_unlock(&rq->lock); + stop_one_cpu_nowait(rq->cpu, push_cpu_stop, + push_task, &rq->push_work); + raw_spin_lock(&rq->lock); + } + + return 0; + } + if (WARN_ON(next_task == rq->curr)) return 0; @ kernel/sched/rt.c:1963 @ static int push_rt_task(struct rq *rq) deactivate_task(rq, next_task, 0); set_task_cpu(next_task, lowest_rq->cpu); activate_task(lowest_rq, next_task, 0); - ret = 1; - resched_curr(lowest_rq); + ret = 1; double_unlock_balance(rq, lowest_rq); - out: put_task_struct(next_task); @ kernel/sched/rt.c:1976 @ static int push_rt_task(struct rq *rq) static void push_rt_tasks(struct rq *rq) { /* push_rt_task will return true if it moved an RT */ - while (push_rt_task(rq)) + while (push_rt_task(rq, false)) ; } @ kernel/sched/rt.c:2129 @ void rto_push_irq_work_func(struct irq_work *work) */ if (has_pushable_tasks(rq)) { raw_spin_lock(&rq->lock); - push_rt_tasks(rq); + while (push_rt_task(rq, true)) + ; raw_spin_unlock(&rq->lock); } @ kernel/sched/rt.c:2155 @ static void pull_rt_task(struct rq *this_rq) { int this_cpu = this_rq->cpu, cpu; bool resched = false; - struct task_struct *p; + struct task_struct *p, *push_task; struct rq *src_rq; int rt_overload_count = rt_overloaded(this_rq); @ kernel/sched/rt.c:2202 @ static void pull_rt_task(struct rq *this_rq) * double_lock_balance, and another CPU could * alter this_rq */ + push_task = NULL; double_lock_balance(this_rq, src_rq); /* @ kernel/sched/rt.c:2230 @ static void pull_rt_task(struct rq *this_rq) if (p->prio < src_rq->curr->prio) goto skip; - resched = true; - - deactivate_task(src_rq, p, 0); - set_task_cpu(p, this_cpu); - activate_task(this_rq, p, 0); + if (is_migration_disabled(p)) { + trace_sched_migrate_pull_tp(p); + push_task = get_push_task(src_rq); + } else { + deactivate_task(src_rq, p, 0); + set_task_cpu(p, this_cpu); + activate_task(this_rq, p, 0); + resched = true; + } /* * We continue with the search, just in * case there's an even higher prio task @ kernel/sched/rt.c:2248 @ static void pull_rt_task(struct rq *this_rq) } skip: double_unlock_balance(this_rq, src_rq); + + if (push_task) { + raw_spin_unlock(&this_rq->lock); + stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, + push_task, &src_rq->push_work); + raw_spin_lock(&this_rq->lock); + } } if (resched) @ kernel/sched/rt.c:2503 @ const struct sched_class rt_sched_class .rq_offline = rq_offline_rt, .task_woken = task_woken_rt, .switched_from = switched_from_rt, + .find_lock_rq = find_lock_lowest_rq, #endif .task_tick = task_tick_rt, @ kernel/sched/sched.h:979 @ struct rq { unsigned long cpu_capacity_orig; struct callback_head *balance_callback; + unsigned char balance_flags; unsigned char nohz_idle_balance; unsigned char idle_balance; @ kernel/sched/sched.h:1010 @ struct rq { /* This is used to determine avg_idle's max value */ u64 max_idle_balance_cost; + +#ifdef CONFIG_HOTPLUG_CPU + struct rcuwait hotplug_wait; +#endif #endif /* CONFIG_SMP */ #ifdef CONFIG_IRQ_TIME_ACCOUNTING @ kernel/sched/sched.h:1060 @ struct rq { /* Must be inspected within a rcu lock section */ struct cpuidle_state *idle_state; #endif + +#ifdef CONFIG_SMP + unsigned int nr_pinned; +#endif + unsigned int push_busy; + struct cpu_stop_work push_work; }; #ifdef CONFIG_FAIR_GROUP_SCHED @ kernel/sched/sched.h:1093 @ static inline int cpu_of(struct rq *rq) #endif } +#define MDF_PUSH 0x01 + +static inline bool is_migration_disabled(struct task_struct *p) +{ +#ifdef CONFIG_SMP + return p->migration_disabled; +#else + return false; +#endif +} #ifdef CONFIG_SCHED_SMT extern void __update_idle_core(struct rq *rq); @ kernel/sched/sched.h:1249 @ static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); rf->clock_update_flags = 0; #endif +#ifdef CONFIG_SMP + SCHED_WARN_ON(rq->balance_callback); +#endif } static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) @ kernel/sched/sched.h:1413 @ init_numa_balancing(unsigned long clone_flags, struct task_struct *p) #ifdef CONFIG_SMP +#define BALANCE_WORK 0x01 +#define BALANCE_PUSH 0x02 + static inline void queue_balance_callback(struct rq *rq, struct callback_head *head, @ kernel/sched/sched.h:1423 @ queue_balance_callback(struct rq *rq, { lockdep_assert_held(&rq->lock); - if (unlikely(head->next)) + if (unlikely(head->next || (rq->balance_flags & BALANCE_PUSH))) return; head->func = (void (*)(struct callback_head *))func; head->next = rq->balance_callback; rq->balance_callback = head; + rq->balance_flags |= BALANCE_WORK; } #define rcu_dereference_check_sched_domain(p) \ @ kernel/sched/sched.h:1756 @ static inline int task_on_rq_migrating(struct task_struct *p) #define WF_FORK 0x02 /* Child wakeup after fork */ #define WF_MIGRATED 0x04 /* Internal use, task got migrated */ #define WF_ON_CPU 0x08 /* Wakee is on_cpu */ +#define WF_LOCK_SLEEPER 0x10 /* Wakeup spinlock "sleeper" */ /* * To aid in avoiding the subversion of "niceness" due to uneven distribution @ kernel/sched/sched.h:1838 @ struct sched_class { void (*task_woken)(struct rq *this_rq, struct task_struct *task); void (*set_cpus_allowed)(struct task_struct *p, - const struct cpumask *newmask); + const struct cpumask *newmask, + u32 flags); void (*rq_online)(struct rq *rq); void (*rq_offline)(struct rq *rq); + + struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); #endif void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); @ kernel/sched/sched.h:1928 @ static inline bool sched_fair_runnable(struct rq *rq) extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); extern struct task_struct *pick_next_task_idle(struct rq *rq); +#define SCA_CHECK 0x01 +#define SCA_MIGRATE_DISABLE 0x02 +#define SCA_MIGRATE_ENABLE 0x04 + #ifdef CONFIG_SMP extern void update_group_capacity(struct sched_domain *sd, int cpu); extern void trigger_load_balance(struct rq *rq); -extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask); +extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags); + +static inline struct task_struct *get_push_task(struct rq *rq) +{ + struct task_struct *p = rq->curr; + + lockdep_assert_held(&rq->lock); + + if (rq->push_busy) + return NULL; + + if (p->nr_cpus_allowed == 1) + return NULL; + + if (p->migration_disabled) + return NULL; + + rq->push_busy = true; + return get_task_struct(p); +} + +extern int push_cpu_stop(void *arg); #endif @ kernel/sched/sched.h:2003 @ extern void reweight_task(struct task_struct *p, int prio); extern void resched_curr(struct rq *rq); extern void resched_cpu(int cpu); +#ifdef CONFIG_PREEMPT_LAZY +extern void resched_curr_lazy(struct rq *rq); +#else +static inline void resched_curr_lazy(struct rq *rq) +{ + resched_curr(rq); +} +#endif + extern struct rt_bandwidth def_rt_bandwidth; extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); @ kernel/sched/swait.c:67 @ void swake_up_all(struct swait_queue_head *q) struct swait_queue *curr; LIST_HEAD(tmp); + WARN_ON(irqs_disabled()); raw_spin_lock_irq(&q->lock); list_splice_init(&q->task_list, &tmp); while (!list_empty(&tmp)) { @ kernel/sched/topology.c:517 @ static int init_rootdomain(struct root_domain *rd) rd->rto_cpu = -1; raw_spin_lock_init(&rd->rto_lock); init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); + atomic_or(IRQ_WORK_HARD_IRQ, &rd->rto_push_work.flags); #endif init_dl_bw(&rd->dl_bw); @ kernel/signal.c:23 @ #include <linux/sched/task.h> #include <linux/sched/task_stack.h> #include <linux/sched/cputime.h> +#include <linux/sched/rt.h> #include <linux/file.h> #include <linux/fs.h> #include <linux/proc_fs.h> @ kernel/signal.c:408 @ void task_join_group_stop(struct task_struct *task) task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); } +static inline struct sigqueue *get_task_cache(struct task_struct *t) +{ + struct sigqueue *q = t->sigqueue_cache; + + if (cmpxchg(&t->sigqueue_cache, q, NULL) != q) + return NULL; + return q; +} + +static inline int put_task_cache(struct task_struct *t, struct sigqueue *q) +{ + if (cmpxchg(&t->sigqueue_cache, NULL, q) == NULL) + return 0; + return 1; +} + /* * allocate a new signal queue record * - this may be called without locks if and only if t == current, otherwise an * appropriate lock must be held to stop the target task from exiting */ static struct sigqueue * -__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) +__sigqueue_do_alloc(int sig, struct task_struct *t, gfp_t flags, + int override_rlimit, int fromslab) { struct sigqueue *q = NULL; struct user_struct *user; @ kernel/signal.c:453 @ __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimi rcu_read_unlock(); if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { - q = kmem_cache_alloc(sigqueue_cachep, flags); + if (!fromslab) + q = get_task_cache(t); + if (!q) + q = kmem_cache_alloc(sigqueue_cachep, flags); } else { print_dropped_signal(sig); } @ kernel/signal.c:473 @ __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimi return q; } +static struct sigqueue * +__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, + int override_rlimit) +{ + return __sigqueue_do_alloc(sig, t, flags, override_rlimit, 0); +} + static void __sigqueue_free(struct sigqueue *q) { if (q->flags & SIGQUEUE_PREALLOC) @ kernel/signal.c:489 @ static void __sigqueue_free(struct sigqueue *q) kmem_cache_free(sigqueue_cachep, q); } +static void sigqueue_free_current(struct sigqueue *q) +{ + struct user_struct *up; + + if (q->flags & SIGQUEUE_PREALLOC) + return; + + up = q->user; + if (rt_prio(current->normal_prio) && !put_task_cache(current, q)) { + if (atomic_dec_and_test(&up->sigpending)) + free_uid(up); + } else + __sigqueue_free(q); +} + void flush_sigqueue(struct sigpending *queue) { struct sigqueue *q; @ kernel/signal.c:516 @ void flush_sigqueue(struct sigpending *queue) } } +/* + * Called from __exit_signal. Flush tsk->pending and + * tsk->sigqueue_cache + */ +void flush_task_sigqueue(struct task_struct *tsk) +{ + struct sigqueue *q; + + flush_sigqueue(&tsk->pending); + + q = get_task_cache(tsk); + if (q) + kmem_cache_free(sigqueue_cachep, q); +} + /* * Flush all pending signals for this kthread. */ @ kernel/signal.c:655 @ static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *i (info->si_code == SI_TIMER) && (info->si_sys_private); - __sigqueue_free(first); + sigqueue_free_current(first); } else { /* * Ok, it wasn't in the queue. This must be @ kernel/signal.c:692 @ int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *in bool resched_timer = false; int signr; + WARN_ON_ONCE(tsk != current); + /* We only dequeue private signals from ourselves, we don't let * signalfd steal them */ @ kernel/signal.c:1377 @ force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t) struct k_sigaction *action; int sig = info->si_signo; + /* + * On some archs, PREEMPT_RT has to delay sending a signal from a trap + * since it can not enable preemption, and the signal code's spin_locks + * turn into mutexes. Instead, it must set TIF_NOTIFY_RESUME which will + * send the signal on exit of the trap. + */ +#ifdef ARCH_RT_DELAYS_SIGNAL_SEND + if (in_atomic()) { + struct task_struct *t = current; + + if (WARN_ON_ONCE(t->forced_info.si_signo)) + return 0; + + if (is_si_special(info)) { + WARN_ON_ONCE(info != SEND_SIG_PRIV); + t->forced_info.si_signo = info->si_signo; + t->forced_info.si_errno = 0; + t->forced_info.si_code = SI_KERNEL; + t->forced_info.si_pid = 0; + t->forced_info.si_uid = 0; + } else { + t->forced_info = *info; + } + + set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); + return 0; + } +#endif spin_lock_irqsave(&t->sighand->siglock, flags); action = &t->sighand->action[sig-1]; ignored = action->sa.sa_handler == SIG_IGN; @ kernel/signal.c:1898 @ EXPORT_SYMBOL(kill_pid); */ struct sigqueue *sigqueue_alloc(void) { - struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); + /* Preallocated sigqueue objects always from the slabcache ! */ + struct sigqueue *q = __sigqueue_do_alloc(-1, current, GFP_KERNEL, 0, 1); if (q) q->flags |= SIGQUEUE_PREALLOC; @ kernel/signal.c:2285 @ static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t if (gstop_done && ptrace_reparented(current)) do_notify_parent_cldstop(current, false, why); - /* - * Don't want to allow preemption here, because - * sys_ptrace() needs this task to be inactive. - * - * XXX: implement read_unlock_no_resched(). - */ - preempt_disable(); read_unlock(&tasklist_lock); cgroup_enter_frozen(); - preempt_enable_no_resched(); freezable_schedule(); cgroup_leave_frozen(true); } else { @ kernel/smp.c:453 @ void flush_smp_call_function_from_idle(void) local_irq_save(flags); flush_smp_call_function_queue(true); - if (local_softirq_pending()) - do_softirq(); + + if (local_softirq_pending()) { + + if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { + do_softirq(); + } else { + struct task_struct *ksoftirqd = this_cpu_ksoftirqd(); + + if (ksoftirqd && ksoftirqd->state != TASK_RUNNING) + wake_up_process(ksoftirqd); + } + } local_irq_restore(flags); } @ kernel/softirq.c:16 @ #include <linux/kernel_stat.h> #include <linux/interrupt.h> #include <linux/init.h> +#include <linux/local_lock.h> #include <linux/mm.h> #include <linux/notifier.h> #include <linux/percpu.h> @ kernel/softirq.c:29 @ #include <linux/smpboot.h> #include <linux/tick.h> #include <linux/irq.h> +#include <linux/wait_bit.h> #define CREATE_TRACE_POINTS #include <trace/events/irq.h> @ kernel/softirq.c:97 @ static bool ksoftirqd_running(unsigned long pending) !__kthread_should_park(tsk); } +#ifdef CONFIG_TRACE_IRQFLAGS +DEFINE_PER_CPU(int, hardirqs_enabled); +DEFINE_PER_CPU(int, hardirq_context); +EXPORT_PER_CPU_SYMBOL_GPL(hardirqs_enabled); +EXPORT_PER_CPU_SYMBOL_GPL(hardirq_context); +#endif + /* - * preempt_count and SOFTIRQ_OFFSET usage: - * - preempt_count is changed by SOFTIRQ_OFFSET on entering or leaving - * softirq processing. - * - preempt_count is changed by SOFTIRQ_DISABLE_OFFSET (= 2 * SOFTIRQ_OFFSET) + * SOFTIRQ_OFFSET usage: + * + * On !RT kernels 'count' is the preempt counter, on RT kernels this applies + * to a per CPU counter and to task::softirqs_disabled_cnt. + * + * - count is changed by SOFTIRQ_OFFSET on entering or leaving softirq + * processing. + * + * - count is changed by SOFTIRQ_DISABLE_OFFSET (= 2 * SOFTIRQ_OFFSET) * on local_bh_disable or local_bh_enable. + * * This lets us distinguish between whether we are currently processing * softirq and whether we just have bh disabled. */ +#ifdef CONFIG_PREEMPT_RT /* - * This one is for softirq.c-internal use, - * where hardirqs are disabled legitimately: + * RT accounts for BH disabled sections in task::softirqs_disabled_cnt and + * also in per CPU softirq_ctrl::cnt. This is necessary to allow tasks in a + * softirq disabled section to be preempted. + * + * The per task counter is used for softirq_count(), in_softirq() and + * in_serving_softirqs() because these counts are only valid when the task + * holding softirq_ctrl::lock is running. + * + * The per CPU counter prevents pointless wakeups of ksoftirqd in case that + * the task which is in a softirq disabled section is preempted or blocks. */ -#ifdef CONFIG_TRACE_IRQFLAGS +struct softirq_ctrl { + local_lock_t lock; + int cnt; +}; -DEFINE_PER_CPU(int, hardirqs_enabled); -DEFINE_PER_CPU(int, hardirq_context); -EXPORT_PER_CPU_SYMBOL_GPL(hardirqs_enabled); -EXPORT_PER_CPU_SYMBOL_GPL(hardirq_context); +static DEFINE_PER_CPU(struct softirq_ctrl, softirq_ctrl) = { + .lock = INIT_LOCAL_LOCK(softirq_ctrl.lock), +}; + +/** + * local_bh_blocked() - Check for idle whether BH processing is blocked + * + * Returns false if the per CPU softirq::cnt is 0 otherwise true. + * + * This is invoked from the idle task to guard against false positive + * softirq pending warnings, which would happen when the task which holds + * softirq_ctrl::lock was the only running task on the CPU and blocks on + * some other lock. + */ +bool local_bh_blocked(void) +{ + return __this_cpu_read(softirq_ctrl.cnt) != 0; +} + +void __local_bh_disable_ip(unsigned long ip, unsigned int cnt) +{ + unsigned long flags; + int newcnt; + + WARN_ON_ONCE(in_hardirq()); + + /* First entry of a task into a BH disabled section? */ + if (!current->softirq_disable_cnt) { + if (preemptible()) { + local_lock(&softirq_ctrl.lock); + /* Required to meet the RCU bottomhalf requirements. */ + rcu_read_lock(); + } else { + DEBUG_LOCKS_WARN_ON(this_cpu_read(softirq_ctrl.cnt)); + } + } + + /* + * Track the per CPU softirq disabled state. On RT this is per CPU + * state to allow preemption of bottom half disabled sections. + */ + newcnt = __this_cpu_add_return(softirq_ctrl.cnt, cnt); + /* + * Reflect the result in the task state to prevent recursion on the + * local lock and to make softirq_count() & al work. + */ + current->softirq_disable_cnt = newcnt; + + if (IS_ENABLED(CONFIG_TRACE_IRQFLAGS) && newcnt == cnt) { + raw_local_irq_save(flags); + lockdep_softirqs_off(ip); + raw_local_irq_restore(flags); + } +} +EXPORT_SYMBOL(__local_bh_disable_ip); + +static void __local_bh_enable(unsigned int cnt, bool unlock) +{ + unsigned long flags; + int newcnt; + + DEBUG_LOCKS_WARN_ON(current->softirq_disable_cnt != + this_cpu_read(softirq_ctrl.cnt)); + + if (IS_ENABLED(CONFIG_TRACE_IRQFLAGS) && softirq_count() == cnt) { + raw_local_irq_save(flags); + lockdep_softirqs_on(_RET_IP_); + raw_local_irq_restore(flags); + } + + newcnt = __this_cpu_sub_return(softirq_ctrl.cnt, cnt); + current->softirq_disable_cnt = newcnt; + + if (!newcnt && unlock) { + rcu_read_unlock(); + local_unlock(&softirq_ctrl.lock); + } +} + +void __local_bh_enable_ip(unsigned long ip, unsigned int cnt) +{ + bool preempt_on = preemptible(); + unsigned long flags; + u32 pending; + int curcnt; + + WARN_ON_ONCE(in_irq()); + lockdep_assert_irqs_enabled(); + + local_irq_save(flags); + curcnt = __this_cpu_read(softirq_ctrl.cnt); + + /* + * If this is not reenabling soft interrupts, no point in trying to + * run pending ones. + */ + if (curcnt != cnt) + goto out; + + pending = local_softirq_pending(); + if (!pending || ksoftirqd_running(pending)) + goto out; + + /* + * If this was called from non preemptible context, wake up the + * softirq daemon. + */ + if (!preempt_on) { + wakeup_softirqd(); + goto out; + } + + /* + * Adjust softirq count to SOFTIRQ_OFFSET which makes + * in_serving_softirq() become true. + */ + cnt = SOFTIRQ_OFFSET; + __local_bh_enable(cnt, false); + __do_softirq(); + +out: + __local_bh_enable(cnt, preempt_on); + local_irq_restore(flags); +} +EXPORT_SYMBOL(__local_bh_enable_ip); + +/* + * Invoked from ksoftirqd_run() outside of the interrupt disabled section + * to acquire the per CPU local lock for reentrancy protection. + */ +static inline void ksoftirqd_run_begin(void) +{ + __local_bh_disable_ip(_RET_IP_, SOFTIRQ_OFFSET); + local_irq_disable(); +} + +/* Counterpart to ksoftirqd_run_begin() */ +static inline void ksoftirqd_run_end(void) +{ + __local_bh_enable(SOFTIRQ_OFFSET, true); + WARN_ON_ONCE(in_interrupt()); + local_irq_enable(); +} + +static inline void softirq_handle_begin(void) { } +static inline void softirq_handle_end(void) { } +static inline bool should_wake_ksoftirqd(void) +{ + return !this_cpu_read(softirq_ctrl.cnt); +} + +static inline void invoke_softirq(void) +{ + if (should_wake_ksoftirqd()) + wakeup_softirqd(); +} + +#else /* CONFIG_PREEMPT_RT */ + +/* + * This one is for softirq.c-internal use, where hardirqs are disabled + * legitimately: + */ +#ifdef CONFIG_TRACE_IRQFLAGS void __local_bh_disable_ip(unsigned long ip, unsigned int cnt) { unsigned long flags; @ kernel/softirq.c:393 @ void __local_bh_enable_ip(unsigned long ip, unsigned int cnt) } EXPORT_SYMBOL(__local_bh_enable_ip); +static inline void softirq_handle_begin(void) +{ + __local_bh_disable_ip(_RET_IP_, SOFTIRQ_OFFSET); +} + +static inline void softirq_handle_end(void) +{ + __local_bh_enable(SOFTIRQ_OFFSET); + WARN_ON_ONCE(in_interrupt()); +} + +static inline void ksoftirqd_run_begin(void) +{ + local_irq_disable(); +} + +static inline void ksoftirqd_run_end(void) +{ + local_irq_enable(); +} + +static inline bool should_wake_ksoftirqd(void) +{ + return true; +} + +static inline void invoke_softirq(void) +{ + if (ksoftirqd_running(local_softirq_pending())) + return; + + if (!force_irqthreads) { +#ifdef CONFIG_HAVE_IRQ_EXIT_ON_IRQ_STACK + /* + * We can safely execute softirq on the current stack if + * it is the irq stack, because it should be near empty + * at this stage. + */ + __do_softirq(); +#else + /* + * Otherwise, irq_exit() is called on the task stack that can + * be potentially deep already. So call softirq in its own stack + * to prevent from any overrun. + */ + do_softirq_own_stack(); +#endif + } else { + wakeup_softirqd(); + } +} + +asmlinkage __visible void do_softirq(void) +{ + __u32 pending; + unsigned long flags; + + if (in_interrupt()) + return; + + local_irq_save(flags); + + pending = local_softirq_pending(); + + if (pending && !ksoftirqd_running(pending)) + do_softirq_own_stack(); + + local_irq_restore(flags); +} + +#endif /* !CONFIG_PREEMPT_RT */ + /* * We restart softirq processing for at most MAX_SOFTIRQ_RESTART times, * but break the loop if need_resched() is set or after 2 ms. @ kernel/softirq.c:532 @ asmlinkage __visible void __softirq_entry __do_softirq(void) current->flags &= ~PF_MEMALLOC; pending = local_softirq_pending(); - account_irq_enter_time(current); - __local_bh_disable_ip(_RET_IP_, SOFTIRQ_OFFSET); + softirq_handle_begin(); in_hardirq = lockdep_softirq_start(); + account_softirq_enter(current); restart: /* Reset the pending bitmask before enabling irqs */ @ kernel/softirq.c:569 @ asmlinkage __visible void __softirq_entry __do_softirq(void) pending >>= softirq_bit; } - if (__this_cpu_read(ksoftirqd) == current) + if (!IS_ENABLED(CONFIG_PREEMPT_RT) && + __this_cpu_read(ksoftirqd) == current) rcu_softirq_qs(); + local_irq_disable(); pending = local_softirq_pending(); @ kernel/softirq.c:584 @ asmlinkage __visible void __softirq_entry __do_softirq(void) wakeup_softirqd(); } + account_softirq_exit(current); lockdep_softirq_end(in_hardirq); - account_irq_exit_time(current); - __local_bh_enable(SOFTIRQ_OFFSET); - WARN_ON_ONCE(in_interrupt()); + softirq_handle_end(); current_restore_flags(old_flags, PF_MEMALLOC); } -asmlinkage __visible void do_softirq(void) -{ - __u32 pending; - unsigned long flags; - - if (in_interrupt()) - return; - - local_irq_save(flags); - - pending = local_softirq_pending(); - - if (pending && !ksoftirqd_running(pending)) - do_softirq_own_stack(); - - local_irq_restore(flags); -} - /** * irq_enter_rcu - Enter an interrupt context with RCU watching */ void irq_enter_rcu(void) { - if (is_idle_task(current) && !in_interrupt()) { - /* - * Prevent raise_softirq from needlessly waking up ksoftirqd - * here, as softirq will be serviced on return from interrupt. - */ - local_bh_disable(); + __irq_enter_raw(); + + if (is_idle_task(current) && (irq_count() == HARDIRQ_OFFSET)) tick_irq_enter(); - _local_bh_enable(); - } - __irq_enter(); + + account_hardirq_enter(current); } /** @ kernel/softirq.c:612 @ void irq_enter(void) irq_enter_rcu(); } -static inline void invoke_softirq(void) -{ - if (ksoftirqd_running(local_softirq_pending())) - return; - - if (!force_irqthreads) { -#ifdef CONFIG_HAVE_IRQ_EXIT_ON_IRQ_STACK - /* - * We can safely execute softirq on the current stack if - * it is the irq stack, because it should be near empty - * at this stage. - */ - __do_softirq(); -#else - /* - * Otherwise, irq_exit() is called on the task stack that can - * be potentially deep already. So call softirq in its own stack - * to prevent from any overrun. - */ - do_softirq_own_stack(); -#endif - } else { - wakeup_softirqd(); - } -} - static inline void tick_irq_exit(void) { #ifdef CONFIG_NO_HZ_COMMON @ kernel/softirq.c:632 @ static inline void __irq_exit_rcu(void) #else lockdep_assert_irqs_disabled(); #endif - account_irq_exit_time(current); + account_hardirq_exit(current); preempt_count_sub(HARDIRQ_OFFSET); if (!in_interrupt() && local_softirq_pending()) invoke_softirq(); @ kernel/softirq.c:681 @ inline void raise_softirq_irqoff(unsigned int nr) * Otherwise we wake up ksoftirqd to make sure we * schedule the softirq soon. */ - if (!in_interrupt()) + if (!in_interrupt() && should_wake_ksoftirqd()) wakeup_softirqd(); } @ kernel/softirq.c:747 @ void __tasklet_hi_schedule(struct tasklet_struct *t) } EXPORT_SYMBOL(__tasklet_hi_schedule); +static inline bool tasklet_clear_sched(struct tasklet_struct *t) +{ + if (test_and_clear_bit(TASKLET_STATE_SCHED, &t->state)) { + wake_up_var(&t->state); + return true; + } + + return false; +} + static void tasklet_action_common(struct softirq_action *a, struct tasklet_head *tl_head, unsigned int softirq_nr) @ kernel/softirq.c:776 @ static void tasklet_action_common(struct softirq_action *a, if (tasklet_trylock(t)) { if (!atomic_read(&t->count)) { - if (!test_and_clear_bit(TASKLET_STATE_SCHED, - &t->state)) + if (!tasklet_clear_sched(t)) BUG(); if (t->use_callback) t->callback(t); @ kernel/softirq.c:831 @ void tasklet_init(struct tasklet_struct *t, } EXPORT_SYMBOL(tasklet_init); +#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) +/* + * Do not use in new code. Waiting for tasklets from atomic contexts is + * error prone and should be avoided. + */ +void tasklet_unlock_spin_wait(struct tasklet_struct *t) +{ + while (test_bit(TASKLET_STATE_RUN, &(t)->state)) { + if (IS_ENABLED(CONFIG_PREEMPT_RT)) { + /* + * Prevent a live lock when current preempted soft + * interrupt processing or prevents ksoftirqd from + * running. If the tasklet runs on a different CPU + * then this has no effect other than doing the BH + * disable/enable dance for nothing. + */ + local_bh_disable(); + local_bh_enable(); + } else { + cpu_relax(); + } + } +} +EXPORT_SYMBOL(tasklet_unlock_spin_wait); +#endif + void tasklet_kill(struct tasklet_struct *t) { if (in_interrupt()) pr_notice("Attempt to kill tasklet from interrupt\n"); - while (test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) { - do { - yield(); - } while (test_bit(TASKLET_STATE_SCHED, &t->state)); - } + while (test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) + wait_var_event(&t->state, !test_bit(TASKLET_STATE_SCHED, &t->state)); + tasklet_unlock_wait(t); - clear_bit(TASKLET_STATE_SCHED, &t->state); + tasklet_clear_sched(t); } EXPORT_SYMBOL(tasklet_kill); +#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) +void tasklet_unlock(struct tasklet_struct *t) +{ + smp_mb__before_atomic(); + clear_bit(TASKLET_STATE_RUN, &t->state); + smp_mb__after_atomic(); + wake_up_var(&t->state); +} +EXPORT_SYMBOL_GPL(tasklet_unlock); + +void tasklet_unlock_wait(struct tasklet_struct *t) +{ + wait_var_event(&t->state, !test_bit(TASKLET_STATE_RUN, &t->state)); +} +EXPORT_SYMBOL_GPL(tasklet_unlock_wait); +#endif + void __init softirq_init(void) { int cpu; @ kernel/softirq.c:909 @ static int ksoftirqd_should_run(unsigned int cpu) static void run_ksoftirqd(unsigned int cpu) { - local_irq_disable(); + ksoftirqd_run_begin(); if (local_softirq_pending()) { /* * We can safely run softirq on inline stack, as we are not deep * in the task stack here. */ __do_softirq(); - local_irq_enable(); + ksoftirqd_run_end(); cond_resched(); return; } - local_irq_enable(); + ksoftirqd_run_end(); } #ifdef CONFIG_HOTPLUG_CPU @ kernel/stop_machine.c:45 @ struct cpu_stopper { struct list_head works; /* list of pending works */ struct cpu_stop_work stop_work; /* for stop_cpus */ + unsigned long caller; + cpu_stop_fn_t fn; }; static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); static bool stop_machine_initialized = false; +void print_stop_info(const char *log_lvl, struct task_struct *task) +{ + struct cpu_stopper *stopper = this_cpu_ptr(&cpu_stopper); + + if (task != stopper->thread) + return; + + printk("%sStopper: %pS <- %pS\n", log_lvl, stopper->fn, (void *)stopper->caller); +} + /* static data for stop_cpus */ static DEFINE_MUTEX(stop_cpus_mutex); static bool stop_cpus_in_progress; @ kernel/stop_machine.c:138 @ static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) { struct cpu_stop_done done; - struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; + struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done, .caller = _RET_IP_ }; cpu_stop_init_done(&done, 1); if (!cpu_stop_queue_work(cpu, &work)) @ kernel/stop_machine.c:346 @ int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void * work1 = work2 = (struct cpu_stop_work){ .fn = multi_cpu_stop, .arg = &msdata, - .done = &done + .done = &done, + .caller = _RET_IP_, }; cpu_stop_init_done(&done, 2); @ kernel/stop_machine.c:383 @ int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void * bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, struct cpu_stop_work *work_buf) { - *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; + *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, .caller = _RET_IP_, }; return cpu_stop_queue_work(cpu, work_buf); } @ kernel/stop_machine.c:503 @ static void cpu_stopper_thread(unsigned int cpu) int ret; /* cpu stop callbacks must not sleep, make in_atomic() == T */ + stopper->caller = work->caller; + stopper->fn = fn; preempt_count_inc(); ret = fn(arg); if (done) { @ kernel/stop_machine.c:513 @ static void cpu_stopper_thread(unsigned int cpu) cpu_stop_signal_done(done); } preempt_count_dec(); + stopper->fn = NULL; + stopper->caller = 0; WARN_ONCE(preempt_count(), "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg); goto repeat; @ kernel/time/hrtimer.c:2055 @ SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, } #endif +#ifdef CONFIG_PREEMPT_RT +/* + * Sleep for 1 ms in hope whoever holds what we want will let it go. + */ +void cpu_chill(void) +{ + unsigned int freeze_flag = current->flags & PF_NOFREEZE; + struct task_struct *self = current; + ktime_t chill_time; + + raw_spin_lock_irq(&self->pi_lock); + self->saved_state = self->state; + __set_current_state_no_track(TASK_UNINTERRUPTIBLE); + raw_spin_unlock_irq(&self->pi_lock); + + chill_time = ktime_set(0, NSEC_PER_MSEC); + + current->flags |= PF_NOFREEZE; + schedule_hrtimeout(&chill_time, HRTIMER_MODE_REL_HARD); + if (!freeze_flag) + current->flags &= ~PF_NOFREEZE; + + raw_spin_lock_irq(&self->pi_lock); + __set_current_state_no_track(self->saved_state); + self->saved_state = TASK_RUNNING; + raw_spin_unlock_irq(&self->pi_lock); +} +EXPORT_SYMBOL(cpu_chill); +#endif + /* * Functions related to boot-time initialization: */ @ kernel/time/tick-sched.c:928 @ static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) if (unlikely(local_softirq_pending())) { static int ratelimit; - if (ratelimit < 10 && + if (ratelimit < 10 && !local_bh_blocked() && (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n", (unsigned int) local_softirq_pending()); @ kernel/time/timer.c:1290 @ static void del_timer_wait_running(struct timer_list *timer) u32 tf; tf = READ_ONCE(timer->flags); - if (!(tf & TIMER_MIGRATING)) { + if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) { struct timer_base *base = get_timer_base(tf); /* @ kernel/time/timer.c:1374 @ int del_timer_sync(struct timer_list *timer) */ WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); + /* + * Must be able to sleep on PREEMPT_RT because of the slowpath in + * del_timer_wait_running(). + */ + if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE)) + lockdep_assert_preemption_enabled(); + do { ret = try_to_del_timer_sync(timer); @ kernel/trace/blktrace.c:75 @ static void trace_note(struct blk_trace *bt, pid_t pid, int action, struct blk_io_trace *t; struct ring_buffer_event *event = NULL; struct trace_buffer *buffer = NULL; - int pc = 0; + unsigned int trace_ctx = 0; int cpu = smp_processor_id(); bool blk_tracer = blk_tracer_enabled; ssize_t cgid_len = cgid ? sizeof(cgid) : 0; if (blk_tracer) { buffer = blk_tr->array_buffer.buffer; - pc = preempt_count(); + trace_ctx = tracing_gen_ctx_flags(0); event = trace_buffer_lock_reserve(buffer, TRACE_BLK, sizeof(*t) + len + cgid_len, - 0, pc); + trace_ctx); if (!event) return; t = ring_buffer_event_data(event); @ kernel/trace/blktrace.c:110 @ static void trace_note(struct blk_trace *bt, pid_t pid, int action, memcpy((void *) t + sizeof(*t) + cgid_len, data, len); if (blk_tracer) - trace_buffer_unlock_commit(blk_tr, buffer, event, 0, pc); + trace_buffer_unlock_commit(blk_tr, buffer, event, trace_ctx); } } @ kernel/trace/blktrace.c:225 @ static void __blk_add_trace(struct blk_trace *bt, sector_t sector, int bytes, struct blk_io_trace *t; unsigned long flags = 0; unsigned long *sequence; + unsigned int trace_ctx = 0; pid_t pid; - int cpu, pc = 0; + int cpu; bool blk_tracer = blk_tracer_enabled; ssize_t cgid_len = cgid ? sizeof(cgid) : 0; @ kernel/trace/blktrace.c:256 @ static void __blk_add_trace(struct blk_trace *bt, sector_t sector, int bytes, tracing_record_cmdline(current); buffer = blk_tr->array_buffer.buffer; - pc = preempt_count(); + trace_ctx = tracing_gen_ctx_flags(0); event = trace_buffer_lock_reserve(buffer, TRACE_BLK, sizeof(*t) + pdu_len + cgid_len, - 0, pc); + trace_ctx); if (!event) return; t = ring_buffer_event_data(event); @ kernel/trace/blktrace.c:305 @ static void __blk_add_trace(struct blk_trace *bt, sector_t sector, int bytes, memcpy((void *)t + sizeof(*t) + cgid_len, pdu_data, pdu_len); if (blk_tracer) { - trace_buffer_unlock_commit(blk_tr, buffer, event, 0, pc); + trace_buffer_unlock_commit(blk_tr, buffer, event, trace_ctx); return; } } @ kernel/trace/trace.c:179 @ static union trace_eval_map_item *trace_eval_maps; int tracing_set_tracer(struct trace_array *tr, const char *buf); static void ftrace_trace_userstack(struct trace_array *tr, struct trace_buffer *buffer, - unsigned long flags, int pc); + unsigned int trace_ctx); #define MAX_TRACER_SIZE 100 static char bootup_tracer_buf[MAX_TRACER_SIZE] __initdata; @ kernel/trace/trace.c:908 @ static inline void trace_access_lock_init(void) #ifdef CONFIG_STACKTRACE static void __ftrace_trace_stack(struct trace_buffer *buffer, - unsigned long flags, - int skip, int pc, struct pt_regs *regs); + unsigned int trace_ctx, + int skip, struct pt_regs *regs); static inline void ftrace_trace_stack(struct trace_array *tr, struct trace_buffer *buffer, - unsigned long flags, - int skip, int pc, struct pt_regs *regs); + unsigned int trace_ctx, + int skip, struct pt_regs *regs); #else static inline void __ftrace_trace_stack(struct trace_buffer *buffer, - unsigned long flags, - int skip, int pc, struct pt_regs *regs) + unsigned int trace_ctx, + int skip, struct pt_regs *regs) { } static inline void ftrace_trace_stack(struct trace_array *tr, struct trace_buffer *buffer, - unsigned long flags, - int skip, int pc, struct pt_regs *regs) + unsigned long trace_ctx, + int skip, struct pt_regs *regs) { } @ kernel/trace/trace.c:932 @ static inline void ftrace_trace_stack(struct trace_array *tr, static __always_inline void trace_event_setup(struct ring_buffer_event *event, - int type, unsigned long flags, int pc) + int type, unsigned int trace_ctx) { struct trace_entry *ent = ring_buffer_event_data(event); - tracing_generic_entry_update(ent, type, flags, pc); + tracing_generic_entry_update(ent, type, trace_ctx); } static __always_inline struct ring_buffer_event * __trace_buffer_lock_reserve(struct trace_buffer *buffer, int type, unsigned long len, - unsigned long flags, int pc) + unsigned int trace_ctx) { struct ring_buffer_event *event; event = ring_buffer_lock_reserve(buffer, len); if (event != NULL) - trace_event_setup(event, type, flags, pc); + trace_event_setup(event, type, trace_ctx); return event; } @ kernel/trace/trace.c:1010 @ int __trace_puts(unsigned long ip, const char *str, int size) struct ring_buffer_event *event; struct trace_buffer *buffer; struct print_entry *entry; - unsigned long irq_flags; + unsigned int trace_ctx; int alloc; - int pc; if (!(global_trace.trace_flags & TRACE_ITER_PRINTK)) return 0; - pc = preempt_count(); - if (unlikely(tracing_selftest_running || tracing_disabled)) return 0; alloc = sizeof(*entry) + size + 2; /* possible \n added */ - local_save_flags(irq_flags); + trace_ctx = tracing_gen_ctx(); buffer = global_trace.array_buffer.buffer; ring_buffer_nest_start(buffer); - event = __trace_buffer_lock_reserve(buffer, TRACE_PRINT, alloc, - irq_flags, pc); + event = __trace_buffer_lock_reserve(buffer, TRACE_PRINT, alloc, + trace_ctx); if (!event) { size = 0; goto out; @ kernel/trace/trace.c:1044 @ int __trace_puts(unsigned long ip, const char *str, int size) entry->buf[size] = '\0'; __buffer_unlock_commit(buffer, event); - ftrace_trace_stack(&global_trace, buffer, irq_flags, 4, pc, NULL); + ftrace_trace_stack(&global_trace, buffer, trace_ctx, 4, NULL); out: ring_buffer_nest_end(buffer); return size; @ kernel/trace/trace.c:1061 @ int __trace_bputs(unsigned long ip, const char *str) struct ring_buffer_event *event; struct trace_buffer *buffer; struct bputs_entry *entry; - unsigned long irq_flags; + unsigned int trace_ctx; int size = sizeof(struct bputs_entry); int ret = 0; - int pc; if (!(global_trace.trace_flags & TRACE_ITER_PRINTK)) return 0; - pc = preempt_count(); - if (unlikely(tracing_selftest_running || tracing_disabled)) return 0; - local_save_flags(irq_flags); + trace_ctx = tracing_gen_ctx(); buffer = global_trace.array_buffer.buffer; ring_buffer_nest_start(buffer); event = __trace_buffer_lock_reserve(buffer, TRACE_BPUTS, size, - irq_flags, pc); + trace_ctx); if (!event) goto out; @ kernel/trace/trace.c:1085 @ int __trace_bputs(unsigned long ip, const char *str) entry->str = str; __buffer_unlock_commit(buffer, event); - ftrace_trace_stack(&global_trace, buffer, irq_flags, 4, pc, NULL); + ftrace_trace_stack(&global_trace, buffer, trace_ctx, 4, NULL); ret = 1; out: @ kernel/trace/trace.c:2589 @ enum print_line_t trace_handle_return(struct trace_seq *s) } EXPORT_SYMBOL_GPL(trace_handle_return); -void -tracing_generic_entry_update(struct trace_entry *entry, unsigned short type, - unsigned long flags, int pc) +static unsigned short migration_disable_value(void) { - struct task_struct *tsk = current; - - entry->preempt_count = pc & 0xff; - entry->pid = (tsk) ? tsk->pid : 0; - entry->type = type; - entry->flags = -#ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT - (irqs_disabled_flags(flags) ? TRACE_FLAG_IRQS_OFF : 0) | +#if defined(CONFIG_SMP) && defined(CONFIG_PREEMPT_RT) + return current->migration_disabled; #else - TRACE_FLAG_IRQS_NOSUPPORT | + return 0; +#endif +} + +unsigned int tracing_gen_ctx_irq_test(unsigned int irqs_status) +{ + unsigned int trace_flags = irqs_status; + unsigned int pc; + + pc = preempt_count(); + + if (pc & NMI_MASK) + trace_flags |= TRACE_FLAG_NMI; + if (pc & HARDIRQ_MASK) + trace_flags |= TRACE_FLAG_HARDIRQ; + if (in_serving_softirq()) + trace_flags |= TRACE_FLAG_SOFTIRQ; + + if (tif_need_resched()) + trace_flags |= TRACE_FLAG_NEED_RESCHED; + if (test_preempt_need_resched()) + trace_flags |= TRACE_FLAG_PREEMPT_RESCHED; + +#ifdef CONFIG_PREEMPT_LAZY + if (need_resched_lazy()) + trace_flags |= TRACE_FLAG_NEED_RESCHED_LAZY; #endif - ((pc & NMI_MASK ) ? TRACE_FLAG_NMI : 0) | - ((pc & HARDIRQ_MASK) ? TRACE_FLAG_HARDIRQ : 0) | - ((pc & SOFTIRQ_OFFSET) ? TRACE_FLAG_SOFTIRQ : 0) | - (tif_need_resched() ? TRACE_FLAG_NEED_RESCHED : 0) | - (test_preempt_need_resched() ? TRACE_FLAG_PREEMPT_RESCHED : 0); + + return (pc & 0xff) | + (migration_disable_value() & 0xff) << 8 | + (preempt_lazy_count() & 0xff) << 16 | + (trace_flags << 24); } -EXPORT_SYMBOL_GPL(tracing_generic_entry_update); struct ring_buffer_event * trace_buffer_lock_reserve(struct trace_buffer *buffer, int type, unsigned long len, - unsigned long flags, int pc) + unsigned int trace_ctx) { - return __trace_buffer_lock_reserve(buffer, type, len, flags, pc); + return __trace_buffer_lock_reserve(buffer, type, len, trace_ctx); } DEFINE_PER_CPU(struct ring_buffer_event *, trace_buffered_event); @ kernel/trace/trace.c:2754 @ struct ring_buffer_event * trace_event_buffer_lock_reserve(struct trace_buffer **current_rb, struct trace_event_file *trace_file, int type, unsigned long len, - unsigned long flags, int pc) + unsigned int trace_ctx) { struct ring_buffer_event *entry; int val; @ kernel/trace/trace.c:2767 @ trace_event_buffer_lock_reserve(struct trace_buffer **current_rb, /* Try to use the per cpu buffer first */ val = this_cpu_inc_return(trace_buffered_event_cnt); if ((len < (PAGE_SIZE - sizeof(*entry) - sizeof(entry->array[0]))) && val == 1) { - trace_event_setup(entry, type, flags, pc); + trace_event_setup(entry, type, trace_ctx); entry->array[0] = len; return entry; } @ kernel/trace/trace.c:2775 @ trace_event_buffer_lock_reserve(struct trace_buffer **current_rb, } entry = __trace_buffer_lock_reserve(*current_rb, - type, len, flags, pc); + type, len, trace_ctx); /* * If tracing is off, but we have triggers enabled * we still need to look at the event data. Use the temp_buffer @ kernel/trace/trace.c:2784 @ trace_event_buffer_lock_reserve(struct trace_buffer **current_rb, */ if (!entry && trace_file->flags & EVENT_FILE_FL_TRIGGER_COND) { *current_rb = temp_buffer; - entry = __trace_buffer_lock_reserve(*current_rb, - type, len, flags, pc); + entry = __trace_buffer_lock_reserve(*current_rb, type, len, + trace_ctx); } return entry; } @ kernel/trace/trace.c:2871 @ void trace_event_buffer_commit(struct trace_event_buffer *fbuffer) ftrace_exports(fbuffer->event, TRACE_EXPORT_EVENT); event_trigger_unlock_commit_regs(fbuffer->trace_file, fbuffer->buffer, fbuffer->event, fbuffer->entry, - fbuffer->flags, fbuffer->pc, fbuffer->regs); + fbuffer->trace_ctx, fbuffer->regs); } EXPORT_SYMBOL_GPL(trace_event_buffer_commit); @ kernel/trace/trace.c:2887 @ EXPORT_SYMBOL_GPL(trace_event_buffer_commit); void trace_buffer_unlock_commit_regs(struct trace_array *tr, struct trace_buffer *buffer, struct ring_buffer_event *event, - unsigned long flags, int pc, + unsigned int trace_ctx, struct pt_regs *regs) { __buffer_unlock_commit(buffer, event); @ kernel/trace/trace.c:2898 @ void trace_buffer_unlock_commit_regs(struct trace_array *tr, * and mmiotrace, but that's ok if they lose a function or * two. They are not that meaningful. */ - ftrace_trace_stack(tr, buffer, flags, regs ? 0 : STACK_SKIP, pc, regs); - ftrace_trace_userstack(tr, buffer, flags, pc); + ftrace_trace_stack(tr, buffer, trace_ctx, regs ? 0 : STACK_SKIP, regs); + ftrace_trace_userstack(tr, buffer, trace_ctx); } /* @ kernel/trace/trace.c:2913 @ trace_buffer_unlock_commit_nostack(struct trace_buffer *buffer, } void -trace_function(struct trace_array *tr, - unsigned long ip, unsigned long parent_ip, unsigned long flags, - int pc) +trace_function(struct trace_array *tr, unsigned long ip, unsigned long + parent_ip, unsigned int trace_ctx) { struct trace_event_call *call = &event_function; struct trace_buffer *buffer = tr->array_buffer.buffer; @ kernel/trace/trace.c:2922 @ trace_function(struct trace_array *tr, struct ftrace_entry *entry; event = __trace_buffer_lock_reserve(buffer, TRACE_FN, sizeof(*entry), - flags, pc); + trace_ctx); if (!event) return; entry = ring_buffer_event_data(event); @ kernel/trace/trace.c:2956 @ static DEFINE_PER_CPU(struct ftrace_stacks, ftrace_stacks); static DEFINE_PER_CPU(int, ftrace_stack_reserve); static void __ftrace_trace_stack(struct trace_buffer *buffer, - unsigned long flags, - int skip, int pc, struct pt_regs *regs) + unsigned int trace_ctx, + int skip, struct pt_regs *regs) { struct trace_event_call *call = &event_kernel_stack; struct ring_buffer_event *event; @ kernel/trace/trace.c:3005 @ static void __ftrace_trace_stack(struct trace_buffer *buffer, size = nr_entries * sizeof(unsigned long); event = __trace_buffer_lock_reserve(buffer, TRACE_STACK, (sizeof(*entry) - sizeof(entry->caller)) + size, - flags, pc); + trace_ctx); if (!event) goto out; entry = ring_buffer_event_data(event); @ kernel/trace/trace.c:3026 @ static void __ftrace_trace_stack(struct trace_buffer *buffer, static inline void ftrace_trace_stack(struct trace_array *tr, struct trace_buffer *buffer, - unsigned long flags, - int skip, int pc, struct pt_regs *regs) + unsigned int trace_ctx, + int skip, struct pt_regs *regs) { if (!(tr->trace_flags & TRACE_ITER_STACKTRACE)) return; - __ftrace_trace_stack(buffer, flags, skip, pc, regs); + __ftrace_trace_stack(buffer, trace_ctx, skip, regs); } -void __trace_stack(struct trace_array *tr, unsigned long flags, int skip, - int pc) +void __trace_stack(struct trace_array *tr, unsigned int trace_ctx, + int skip) { struct trace_buffer *buffer = tr->array_buffer.buffer; if (rcu_is_watching()) { - __ftrace_trace_stack(buffer, flags, skip, pc, NULL); + __ftrace_trace_stack(buffer, trace_ctx, skip, NULL); return; } @ kernel/trace/trace.c:3055 @ void __trace_stack(struct trace_array *tr, unsigned long flags, int skip, return; rcu_irq_enter_irqson(); - __ftrace_trace_stack(buffer, flags, skip, pc, NULL); + __ftrace_trace_stack(buffer, trace_ctx, skip, NULL); rcu_irq_exit_irqson(); } @ kernel/trace/trace.c:3065 @ void __trace_stack(struct trace_array *tr, unsigned long flags, int skip, */ void trace_dump_stack(int skip) { - unsigned long flags; - if (tracing_disabled || tracing_selftest_running) return; - local_save_flags(flags); - #ifndef CONFIG_UNWINDER_ORC /* Skip 1 to skip this function. */ skip++; #endif __ftrace_trace_stack(global_trace.array_buffer.buffer, - flags, skip, preempt_count(), NULL); + tracing_gen_ctx(), skip, NULL); } EXPORT_SYMBOL_GPL(trace_dump_stack); @ kernel/trace/trace.c:3082 @ static DEFINE_PER_CPU(int, user_stack_count); static void ftrace_trace_userstack(struct trace_array *tr, - struct trace_buffer *buffer, unsigned long flags, int pc) + struct trace_buffer *buffer, unsigned int trace_ctx) { struct trace_event_call *call = &event_user_stack; struct ring_buffer_event *event; @ kernel/trace/trace.c:3109 @ ftrace_trace_userstack(struct trace_array *tr, __this_cpu_inc(user_stack_count); event = __trace_buffer_lock_reserve(buffer, TRACE_USER_STACK, - sizeof(*entry), flags, pc); + sizeof(*entry), trace_ctx); if (!event) goto out_drop_count; entry = ring_buffer_event_data(event); @ kernel/trace/trace.c:3129 @ ftrace_trace_userstack(struct trace_array *tr, #else /* CONFIG_USER_STACKTRACE_SUPPORT */ static void ftrace_trace_userstack(struct trace_array *tr, struct trace_buffer *buffer, - unsigned long flags, int pc) + unsigned int trace_ctx) { } #endif /* !CONFIG_USER_STACKTRACE_SUPPORT */ @ kernel/trace/trace.c:3259 @ int trace_vbprintk(unsigned long ip, const char *fmt, va_list args) struct trace_buffer *buffer; struct trace_array *tr = &global_trace; struct bprint_entry *entry; - unsigned long flags; + unsigned int trace_ctx; char *tbuffer; - int len = 0, size, pc; + int len = 0, size; if (unlikely(tracing_selftest_running || tracing_disabled)) return 0; @ kernel/trace/trace.c:3269 @ int trace_vbprintk(unsigned long ip, const char *fmt, va_list args) /* Don't pollute graph traces with trace_vprintk internals */ pause_graph_tracing(); - pc = preempt_count(); + trace_ctx = tracing_gen_ctx(); preempt_disable_notrace(); tbuffer = get_trace_buf(); @ kernel/trace/trace.c:3283 @ int trace_vbprintk(unsigned long ip, const char *fmt, va_list args) if (len > TRACE_BUF_SIZE/sizeof(int) || len < 0) goto out_put; - local_save_flags(flags); size = sizeof(*entry) + sizeof(u32) * len; buffer = tr->array_buffer.buffer; ring_buffer_nest_start(buffer); event = __trace_buffer_lock_reserve(buffer, TRACE_BPRINT, size, - flags, pc); + trace_ctx); if (!event) goto out; entry = ring_buffer_event_data(event); @ kernel/trace/trace.c:3297 @ int trace_vbprintk(unsigned long ip, const char *fmt, va_list args) memcpy(entry->buf, tbuffer, sizeof(u32) * len); if (!call_filter_check_discard(call, entry, buffer, event)) { __buffer_unlock_commit(buffer, event); - ftrace_trace_stack(tr, buffer, flags, 6, pc, NULL); + ftrace_trace_stack(tr, buffer, trace_ctx, 6, NULL); } out: @ kernel/trace/trace.c:3320 @ __trace_array_vprintk(struct trace_buffer *buffer, { struct trace_event_call *call = &event_print; struct ring_buffer_event *event; - int len = 0, size, pc; + int len = 0, size; struct print_entry *entry; - unsigned long flags; + unsigned int trace_ctx; char *tbuffer; if (tracing_disabled || tracing_selftest_running) @ kernel/trace/trace.c:3331 @ __trace_array_vprintk(struct trace_buffer *buffer, /* Don't pollute graph traces with trace_vprintk internals */ pause_graph_tracing(); - pc = preempt_count(); + trace_ctx = tracing_gen_ctx(); preempt_disable_notrace(); @ kernel/trace/trace.c:3343 @ __trace_array_vprintk(struct trace_buffer *buffer, len = vscnprintf(tbuffer, TRACE_BUF_SIZE, fmt, args); - local_save_flags(flags); size = sizeof(*entry) + len + 1; ring_buffer_nest_start(buffer); event = __trace_buffer_lock_reserve(buffer, TRACE_PRINT, size, - flags, pc); + trace_ctx); if (!event) goto out; entry = ring_buffer_event_data(event); @ kernel/trace/trace.c:3355 @ __trace_array_vprintk(struct trace_buffer *buffer, memcpy(&entry->buf, tbuffer, len + 1); if (!call_filter_check_discard(call, entry, buffer, event)) { __buffer_unlock_commit(buffer, event); - ftrace_trace_stack(&global_trace, buffer, flags, 6, pc, NULL); + ftrace_trace_stack(&global_trace, buffer, trace_ctx, 6, NULL); } out: @ kernel/trace/trace.c:3821 @ unsigned long trace_total_entries(struct trace_array *tr) static void print_lat_help_header(struct seq_file *m) { - seq_puts(m, "# _------=> CPU# \n" - "# / _-----=> irqs-off \n" - "# | / _----=> need-resched \n" - "# || / _---=> hardirq/softirq \n" - "# ||| / _--=> preempt-depth \n" - "# |||| / delay \n" - "# cmd pid ||||| time | caller \n" - "# \\ / ||||| \\ | / \n"); + seq_puts(m, "# _--------=> CPU# \n" + "# / _-------=> irqs-off \n" + "# | / _------=> need-resched \n" + "# || / _-----=> need-resched-lazy\n" + "# ||| / _----=> hardirq/softirq \n" + "# |||| / _---=> preempt-depth \n" + "# ||||| / _--=> preempt-lazy-depth\n" + "# |||||| / _-=> migrate-disable \n" + "# ||||||| / delay \n" + "# cmd pid |||||||| time | caller \n" + "# \\ / |||||||| \\ | / \n"); } static void print_event_info(struct array_buffer *buf, struct seq_file *m) @ kernel/trace/trace.c:3865 @ static void print_func_help_header_irq(struct array_buffer *buf, struct seq_file print_event_info(buf, m); - seq_printf(m, "# %.*s _-----=> irqs-off\n", prec, space); - seq_printf(m, "# %.*s / _----=> need-resched\n", prec, space); - seq_printf(m, "# %.*s| / _---=> hardirq/softirq\n", prec, space); - seq_printf(m, "# %.*s|| / _--=> preempt-depth\n", prec, space); - seq_printf(m, "# %.*s||| / delay\n", prec, space); - seq_printf(m, "# TASK-PID %.*s CPU# |||| TIMESTAMP FUNCTION\n", prec, " TGID "); - seq_printf(m, "# | | %.*s | |||| | |\n", prec, " | "); + seq_printf(m, "# %.*s _-------=> irqs-off\n", prec, space); + seq_printf(m, "# %.*s / _------=> need-resched\n", prec, space); + seq_printf(m, "# %.*s| / _-----=> need-resched-lazy\n", prec, space); + seq_printf(m, "# %.*s|| / _----=> hardirq/softirq\n", prec, space); + seq_printf(m, "# %.*s||| / _---=> preempt-depth\n", prec, space); + seq_printf(m, "# %.*s|||| / _--=> preempt-lazy-depth\n", prec, space); + seq_printf(m, "# %.*s||||| / _-=> migrate-disable\n", prec, space); + seq_printf(m, "# %.*s|||||| / delay\n", prec, space); + seq_printf(m, "# TASK-PID %.*s CPU# ||||||| TIMESTAMP FUNCTION\n", prec, " TGID "); + seq_printf(m, "# | | %.*s | ||||||| | |\n", prec, " | "); } void @ kernel/trace/trace.c:6667 @ tracing_mark_write(struct file *filp, const char __user *ubuf, enum event_trigger_type tt = ETT_NONE; struct trace_buffer *buffer; struct print_entry *entry; - unsigned long irq_flags; ssize_t written; int size; int len; @ kernel/trace/trace.c:6686 @ tracing_mark_write(struct file *filp, const char __user *ubuf, BUILD_BUG_ON(TRACE_BUF_SIZE >= PAGE_SIZE); - local_save_flags(irq_flags); size = sizeof(*entry) + cnt + 2; /* add '\0' and possible '\n' */ /* If less than "<faulted>", then make sure we can still add that */ @ kernel/trace/trace.c:6694 @ tracing_mark_write(struct file *filp, const char __user *ubuf, buffer = tr->array_buffer.buffer; event = __trace_buffer_lock_reserve(buffer, TRACE_PRINT, size, - irq_flags, preempt_count()); + tracing_gen_ctx()); if (unlikely(!event)) /* Ring buffer disabled, return as if not open for write */ return -EBADF; @ kernel/trace/trace.c:6746 @ tracing_mark_raw_write(struct file *filp, const char __user *ubuf, struct ring_buffer_event *event; struct trace_buffer *buffer; struct raw_data_entry *entry; - unsigned long irq_flags; ssize_t written; int size; int len; @ kernel/trace/trace.c:6767 @ tracing_mark_raw_write(struct file *filp, const char __user *ubuf, BUILD_BUG_ON(TRACE_BUF_SIZE >= PAGE_SIZE); - local_save_flags(irq_flags); size = sizeof(*entry) + cnt; if (cnt < FAULT_SIZE_ID) size += FAULT_SIZE_ID - cnt; buffer = tr->array_buffer.buffer; event = __trace_buffer_lock_reserve(buffer, TRACE_RAW_DATA, size, - irq_flags, preempt_count()); + tracing_gen_ctx()); if (!event) /* Ring buffer disabled, return as if not open for write */ return -EBADF; @ kernel/trace/trace.c:9326 @ void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) tracing_off(); local_irq_save(flags); - printk_nmi_direct_enter(); /* Simulate the iterator */ trace_init_global_iter(&iter); @ kernel/trace/trace.c:9405 @ void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) atomic_dec(&per_cpu_ptr(iter.array_buffer->data, cpu)->disabled); } atomic_dec(&dump_running); - printk_nmi_direct_exit(); local_irq_restore(flags); } EXPORT_SYMBOL_GPL(ftrace_dump); @ kernel/trace/trace.h:139 @ struct kretprobe_trace_entry_head { unsigned long ret_ip; }; -/* - * trace_flag_type is an enumeration that holds different - * states when a trace occurs. These are: - * IRQS_OFF - interrupts were disabled - * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags - * NEED_RESCHED - reschedule is requested - * HARDIRQ - inside an interrupt handler - * SOFTIRQ - inside a softirq handler - */ -enum trace_flag_type { - TRACE_FLAG_IRQS_OFF = 0x01, - TRACE_FLAG_IRQS_NOSUPPORT = 0x02, - TRACE_FLAG_NEED_RESCHED = 0x04, - TRACE_FLAG_HARDIRQ = 0x08, - TRACE_FLAG_SOFTIRQ = 0x10, - TRACE_FLAG_PREEMPT_RESCHED = 0x20, - TRACE_FLAG_NMI = 0x40, -}; - #define TRACE_BUF_SIZE 1024 struct trace_array; @ kernel/trace/trace.h:729 @ struct ring_buffer_event * trace_buffer_lock_reserve(struct trace_buffer *buffer, int type, unsigned long len, - unsigned long flags, - int pc); + unsigned int trace_ctx); struct trace_entry *tracing_get_trace_entry(struct trace_array *tr, struct trace_array_cpu *data); @ kernel/trace/trace.h:754 @ unsigned long trace_total_entries(struct trace_array *tr); void trace_function(struct trace_array *tr, unsigned long ip, unsigned long parent_ip, - unsigned long flags, int pc); + unsigned int trace_ctx); void trace_graph_function(struct trace_array *tr, unsigned long ip, unsigned long parent_ip, - unsigned long flags, int pc); + unsigned int trace_ctx); void trace_latency_header(struct seq_file *m); void trace_default_header(struct seq_file *m); void print_trace_header(struct seq_file *m, struct trace_iterator *iter); @ kernel/trace/trace.h:826 @ static inline void latency_fsnotify(struct trace_array *tr) { } #endif #ifdef CONFIG_STACKTRACE -void __trace_stack(struct trace_array *tr, unsigned long flags, int skip, - int pc); +void __trace_stack(struct trace_array *tr, unsigned int trace_ctx, int skip); #else -static inline void __trace_stack(struct trace_array *tr, unsigned long flags, - int skip, int pc) +static inline void __trace_stack(struct trace_array *tr, unsigned int trace_ctx, + int skip) { } #endif /* CONFIG_STACKTRACE */ @ kernel/trace/trace.h:969 @ extern void graph_trace_open(struct trace_iterator *iter); extern void graph_trace_close(struct trace_iterator *iter); extern int __trace_graph_entry(struct trace_array *tr, struct ftrace_graph_ent *trace, - unsigned long flags, int pc); + unsigned int trace_ctx); extern void __trace_graph_return(struct trace_array *tr, struct ftrace_graph_ret *trace, - unsigned long flags, int pc); + unsigned int trace_ctx); #ifdef CONFIG_DYNAMIC_FTRACE extern struct ftrace_hash __rcu *ftrace_graph_hash; @ kernel/trace/trace.h:1435 @ extern int call_filter_check_discard(struct trace_event_call *call, void *rec, void trace_buffer_unlock_commit_regs(struct trace_array *tr, struct trace_buffer *buffer, struct ring_buffer_event *event, - unsigned long flags, int pc, + unsigned int trcace_ctx, struct pt_regs *regs); static inline void trace_buffer_unlock_commit(struct trace_array *tr, struct trace_buffer *buffer, struct ring_buffer_event *event, - unsigned long flags, int pc) + unsigned int trace_ctx) { - trace_buffer_unlock_commit_regs(tr, buffer, event, flags, pc, NULL); + trace_buffer_unlock_commit_regs(tr, buffer, event, trace_ctx, NULL); } DECLARE_PER_CPU(struct ring_buffer_event *, trace_buffered_event); @ kernel/trace/trace.h:1516 @ __event_trigger_test_discard(struct trace_event_file *file, * @buffer: The ring buffer that the event is being written to * @event: The event meta data in the ring buffer * @entry: The event itself - * @irq_flags: The state of the interrupts at the start of the event - * @pc: The state of the preempt count at the start of the event. + * @trace_ctx: The tracing context flags. * * This is a helper function to handle triggers that require data * from the event itself. It also tests the event against filters and @ kernel/trace/trace.h:1526 @ static inline void event_trigger_unlock_commit(struct trace_event_file *file, struct trace_buffer *buffer, struct ring_buffer_event *event, - void *entry, unsigned long irq_flags, int pc) + void *entry, unsigned int trace_ctx) { enum event_trigger_type tt = ETT_NONE; if (!__event_trigger_test_discard(file, buffer, event, entry, &tt)) - trace_buffer_unlock_commit(file->tr, buffer, event, irq_flags, pc); + trace_buffer_unlock_commit(file->tr, buffer, event, trace_ctx); if (tt) event_triggers_post_call(file, tt); @ kernel/trace/trace.h:1543 @ event_trigger_unlock_commit(struct trace_event_file *file, * @buffer: The ring buffer that the event is being written to * @event: The event meta data in the ring buffer * @entry: The event itself - * @irq_flags: The state of the interrupts at the start of the event - * @pc: The state of the preempt count at the start of the event. + * @trace_ctx: The tracing context flags. * * This is a helper function to handle triggers that require data * from the event itself. It also tests the event against filters and @ kernel/trace/trace.h:1556 @ static inline void event_trigger_unlock_commit_regs(struct trace_event_file *file, struct trace_buffer *buffer, struct ring_buffer_event *event, - void *entry, unsigned long irq_flags, int pc, + void *entry, unsigned int trace_ctx, struct pt_regs *regs) { enum event_trigger_type tt = ETT_NONE; if (!__event_trigger_test_discard(file, buffer, event, entry, &tt)) trace_buffer_unlock_commit_regs(file->tr, buffer, event, - irq_flags, pc, regs); + trace_ctx, regs); if (tt) event_triggers_post_call(file, tt); @ kernel/trace/trace_branch.c:40 @ probe_likely_condition(struct ftrace_likely_data *f, int val, int expect) struct ring_buffer_event *event; struct trace_branch *entry; unsigned long flags; - int pc; + unsigned int trace_ctx; const char *p; if (current->trace_recursion & TRACE_BRANCH_BIT) @ kernel/trace/trace_branch.c:62 @ probe_likely_condition(struct ftrace_likely_data *f, int val, int expect) if (atomic_read(&data->disabled)) goto out; - pc = preempt_count(); + trace_ctx = tracing_gen_ctx_flags(flags); buffer = tr->array_buffer.buffer; event = trace_buffer_lock_reserve(buffer, TRACE_BRANCH, - sizeof(*entry), flags, pc); + sizeof(*entry), trace_ctx); if (!event) goto out; @ kernel/trace/trace_event_perf.c:424 @ NOKPROBE_SYMBOL(perf_trace_buf_alloc); void perf_trace_buf_update(void *record, u16 type) { struct trace_entry *entry = record; - int pc = preempt_count(); - unsigned long flags; - local_save_flags(flags); - tracing_generic_entry_update(entry, type, flags, pc); + tracing_generic_entry_update(entry, type, tracing_gen_ctx()); } NOKPROBE_SYMBOL(perf_trace_buf_update); @ kernel/trace/trace_events.c:186 @ static int trace_define_common_fields(void) __common_field(unsigned char, flags); __common_field(unsigned char, preempt_count); __common_field(int, pid); + __common_field(unsigned char, migrate_disable); + __common_field(unsigned char, preempt_lazy_count); return ret; } @ kernel/trace/trace_events.c:263 @ void *trace_event_buffer_reserve(struct trace_event_buffer *fbuffer, trace_event_ignore_this_pid(trace_file)) return NULL; - local_save_flags(fbuffer->flags); - fbuffer->pc = preempt_count(); /* * If CONFIG_PREEMPTION is enabled, then the tracepoint itself disables * preemption (adding one to the preempt_count). Since we are * interested in the preempt_count at the time the tracepoint was * hit, we need to subtract one to offset the increment. */ - if (IS_ENABLED(CONFIG_PREEMPTION)) - fbuffer->pc--; + fbuffer->trace_ctx = tracing_gen_ctx_dec(); fbuffer->trace_file = trace_file; fbuffer->event = trace_event_buffer_lock_reserve(&fbuffer->buffer, trace_file, event_call->event.type, len, - fbuffer->flags, fbuffer->pc); + fbuffer->trace_ctx); if (!fbuffer->event) return NULL; @ kernel/trace/trace_events.c:3691 @ function_test_events_call(unsigned long ip, unsigned long parent_ip, struct trace_buffer *buffer; struct ring_buffer_event *event; struct ftrace_entry *entry; - unsigned long flags; + unsigned int trace_ctx; long disabled; int cpu; - int pc; - pc = preempt_count(); + trace_ctx = tracing_gen_ctx(); preempt_disable_notrace(); cpu = raw_smp_processor_id(); disabled = atomic_inc_return(&per_cpu(ftrace_test_event_disable, cpu)); @ kernel/trace/trace_events.c:3703 @ function_test_events_call(unsigned long ip, unsigned long parent_ip, if (disabled != 1) goto out; - local_save_flags(flags); - event = trace_event_buffer_lock_reserve(&buffer, &event_trace_file, TRACE_FN, sizeof(*entry), - flags, pc); + trace_ctx); if (!event) goto out; entry = ring_buffer_event_data(event); @ kernel/trace/trace_events.c:3713 @ function_test_events_call(unsigned long ip, unsigned long parent_ip, entry->parent_ip = parent_ip; event_trigger_unlock_commit(&event_trace_file, buffer, event, - entry, flags, pc); + entry, trace_ctx); out: atomic_dec(&per_cpu(ftrace_test_event_disable, cpu)); preempt_enable_notrace(); @ kernel/trace/trace_events_inject.c:195 @ static void *trace_alloc_entry(struct trace_event_call *call, int *size) static int parse_entry(char *str, struct trace_event_call *call, void **pentry) { struct ftrace_event_field *field; - unsigned long irq_flags; void *entry = NULL; int entry_size; u64 val = 0; @ kernel/trace/trace_events_inject.c:205 @ static int parse_entry(char *str, struct trace_event_call *call, void **pentry) if (!entry) return -ENOMEM; - local_save_flags(irq_flags); - tracing_generic_entry_update(entry, call->event.type, irq_flags, - preempt_count()); + tracing_generic_entry_update(entry, call->event.type, + tracing_gen_ctx()); while ((len = parse_field(str, call, &field, &val)) > 0) { if (is_function_field(field)) @ kernel/trace/trace_functions.c:136 @ function_trace_call(unsigned long ip, unsigned long parent_ip, { struct trace_array *tr = op->private; struct trace_array_cpu *data; - unsigned long flags; + unsigned int trace_ctx; int bit; int cpu; - int pc; if (unlikely(!tr->function_enabled)) return; - pc = preempt_count(); + trace_ctx = tracing_gen_ctx(); preempt_disable_notrace(); bit = trace_test_and_set_recursion(TRACE_FTRACE_START); @ kernel/trace/trace_functions.c:152 @ function_trace_call(unsigned long ip, unsigned long parent_ip, cpu = smp_processor_id(); data = per_cpu_ptr(tr->array_buffer.data, cpu); - if (!atomic_read(&data->disabled)) { - local_save_flags(flags); - trace_function(tr, ip, parent_ip, flags, pc); - } + if (!atomic_read(&data->disabled)) + trace_function(tr, ip, parent_ip, trace_ctx); + trace_clear_recursion(bit); out: @ kernel/trace/trace_functions.c:188 @ function_stack_trace_call(unsigned long ip, unsigned long parent_ip, unsigned long flags; long disabled; int cpu; - int pc; + unsigned int trace_ctx; if (unlikely(!tr->function_enabled)) return; @ kernel/trace/trace_functions.c:203 @ function_stack_trace_call(unsigned long ip, unsigned long parent_ip, disabled = atomic_inc_return(&data->disabled); if (likely(disabled == 1)) { - pc = preempt_count(); - trace_function(tr, ip, parent_ip, flags, pc); - __trace_stack(tr, flags, STACK_SKIP, pc); + trace_ctx = tracing_gen_ctx_flags(flags); + trace_function(tr, ip, parent_ip, trace_ctx); + __trace_stack(tr, trace_ctx, STACK_SKIP); } atomic_dec(&data->disabled); @ kernel/trace/trace_functions.c:408 @ ftrace_traceoff(unsigned long ip, unsigned long parent_ip, static __always_inline void trace_stack(struct trace_array *tr) { - unsigned long flags; - int pc; + unsigned int trace_ctx; - local_save_flags(flags); - pc = preempt_count(); + trace_ctx = tracing_gen_ctx(); - __trace_stack(tr, flags, FTRACE_STACK_SKIP, pc); + __trace_stack(tr, trace_ctx, FTRACE_STACK_SKIP); } static void @ kernel/trace/trace_functions_graph.c:99 @ print_graph_duration(struct trace_array *tr, unsigned long long duration, int __trace_graph_entry(struct trace_array *tr, struct ftrace_graph_ent *trace, - unsigned long flags, - int pc) + unsigned int trace_ctx) { struct trace_event_call *call = &event_funcgraph_entry; struct ring_buffer_event *event; @ kernel/trace/trace_functions_graph.c:107 @ int __trace_graph_entry(struct trace_array *tr, struct ftrace_graph_ent_entry *entry; event = trace_buffer_lock_reserve(buffer, TRACE_GRAPH_ENT, - sizeof(*entry), flags, pc); + sizeof(*entry), trace_ctx); if (!event) return 0; entry = ring_buffer_event_data(event); @ kernel/trace/trace_functions_graph.c:131 @ int trace_graph_entry(struct ftrace_graph_ent *trace) struct trace_array *tr = graph_array; struct trace_array_cpu *data; unsigned long flags; + unsigned int trace_ctx; long disabled; int ret; int cpu; - int pc; if (trace_recursion_test(TRACE_GRAPH_NOTRACE_BIT)) return 0; @ kernel/trace/trace_functions_graph.c:176 @ int trace_graph_entry(struct ftrace_graph_ent *trace) data = per_cpu_ptr(tr->array_buffer.data, cpu); disabled = atomic_inc_return(&data->disabled); if (likely(disabled == 1)) { - pc = preempt_count(); - ret = __trace_graph_entry(tr, trace, flags, pc); + trace_ctx = tracing_gen_ctx_flags(flags); + ret = __trace_graph_entry(tr, trace, trace_ctx); } else { ret = 0; } @ kernel/trace/trace_functions_graph.c:190 @ int trace_graph_entry(struct ftrace_graph_ent *trace) static void __trace_graph_function(struct trace_array *tr, - unsigned long ip, unsigned long flags, int pc) + unsigned long ip, unsigned int trace_ctx) { u64 time = trace_clock_local(); struct ftrace_graph_ent ent = { @ kernel/trace/trace_functions_graph.c:204 @ __trace_graph_function(struct trace_array *tr, .rettime = time, }; - __trace_graph_entry(tr, &ent, flags, pc); - __trace_graph_return(tr, &ret, flags, pc); + __trace_graph_entry(tr, &ent, trace_ctx); + __trace_graph_return(tr, &ret, trace_ctx); } void trace_graph_function(struct trace_array *tr, unsigned long ip, unsigned long parent_ip, - unsigned long flags, int pc) + unsigned int trace_ctx) { - __trace_graph_function(tr, ip, flags, pc); + __trace_graph_function(tr, ip, trace_ctx); } void __trace_graph_return(struct trace_array *tr, struct ftrace_graph_ret *trace, - unsigned long flags, - int pc) + unsigned int trace_ctx) { struct trace_event_call *call = &event_funcgraph_exit; struct ring_buffer_event *event; @ kernel/trace/trace_functions_graph.c:226 @ void __trace_graph_return(struct trace_array *tr, struct ftrace_graph_ret_entry *entry; event = trace_buffer_lock_reserve(buffer, TRACE_GRAPH_RET, - sizeof(*entry), flags, pc); + sizeof(*entry), trace_ctx); if (!event) return; entry = ring_buffer_event_data(event); @ kernel/trace/trace_functions_graph.c:240 @ void trace_graph_return(struct ftrace_graph_ret *trace) struct trace_array *tr = graph_array; struct trace_array_cpu *data; unsigned long flags; + unsigned int trace_ctx; long disabled; int cpu; - int pc; ftrace_graph_addr_finish(trace); @ kernel/trace/trace_functions_graph.c:256 @ void trace_graph_return(struct ftrace_graph_ret *trace) data = per_cpu_ptr(tr->array_buffer.data, cpu); disabled = atomic_inc_return(&data->disabled); if (likely(disabled == 1)) { - pc = preempt_count(); - __trace_graph_return(tr, trace, flags, pc); + trace_ctx = tracing_gen_ctx_flags(flags); + __trace_graph_return(tr, trace, trace_ctx); } atomic_dec(&data->disabled); local_irq_restore(flags); @ kernel/trace/trace_hwlat.c:111 @ static void trace_hwlat_sample(struct hwlat_sample *sample) struct trace_buffer *buffer = tr->array_buffer.buffer; struct ring_buffer_event *event; struct hwlat_entry *entry; - unsigned long flags; - int pc; - - pc = preempt_count(); - local_save_flags(flags); event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry), - flags, pc); + tracing_gen_ctx()); if (!event) return; entry = ring_buffer_event_data(event); @ kernel/trace/trace_irqsoff.c:146 @ irqsoff_tracer_call(unsigned long ip, unsigned long parent_ip, struct trace_array *tr = irqsoff_trace; struct trace_array_cpu *data; unsigned long flags; + unsigned int trace_ctx; if (!func_prolog_dec(tr, &data, &flags)) return; - trace_function(tr, ip, parent_ip, flags, preempt_count()); + trace_ctx = tracing_gen_ctx_flags(flags); + + trace_function(tr, ip, parent_ip, trace_ctx); atomic_dec(&data->disabled); } @ kernel/trace/trace_irqsoff.c:183 @ static int irqsoff_graph_entry(struct ftrace_graph_ent *trace) struct trace_array *tr = irqsoff_trace; struct trace_array_cpu *data; unsigned long flags; + unsigned int trace_ctx; int ret; - int pc; if (ftrace_graph_ignore_func(trace)) return 0; @ kernel/trace/trace_irqsoff.c:201 @ static int irqsoff_graph_entry(struct ftrace_graph_ent *trace) if (!func_prolog_dec(tr, &data, &flags)) return 0; - pc = preempt_count(); - ret = __trace_graph_entry(tr, trace, flags, pc); + trace_ctx = tracing_gen_ctx_flags(flags); + ret = __trace_graph_entry(tr, trace, trace_ctx); atomic_dec(&data->disabled); return ret; @ kernel/trace/trace_irqsoff.c:213 @ static void irqsoff_graph_return(struct ftrace_graph_ret *trace) struct trace_array *tr = irqsoff_trace; struct trace_array_cpu *data; unsigned long flags; - int pc; + unsigned int trace_ctx; ftrace_graph_addr_finish(trace); if (!func_prolog_dec(tr, &data, &flags)) return; - pc = preempt_count(); - __trace_graph_return(tr, trace, flags, pc); + trace_ctx = tracing_gen_ctx_flags(flags); + __trace_graph_return(tr, trace, trace_ctx); atomic_dec(&data->disabled); } @ kernel/trace/trace_irqsoff.c:273 @ static void irqsoff_print_header(struct seq_file *s) static void __trace_function(struct trace_array *tr, unsigned long ip, unsigned long parent_ip, - unsigned long flags, int pc) + unsigned int trace_ctx) { if (is_graph(tr)) - trace_graph_function(tr, ip, parent_ip, flags, pc); + trace_graph_function(tr, ip, parent_ip, trace_ctx); else - trace_function(tr, ip, parent_ip, flags, pc); + trace_function(tr, ip, parent_ip, trace_ctx); } #else @ kernel/trace/trace_irqsoff.c:328 @ check_critical_timing(struct trace_array *tr, { u64 T0, T1, delta; unsigned long flags; - int pc; + unsigned int trace_ctx; T0 = data->preempt_timestamp; T1 = ftrace_now(cpu); delta = T1-T0; - local_save_flags(flags); - - pc = preempt_count(); + trace_ctx = tracing_gen_ctx(); if (!report_latency(tr, delta)) goto out; @ kernel/trace/trace_irqsoff.c:345 @ check_critical_timing(struct trace_array *tr, if (!report_latency(tr, delta)) goto out_unlock; - __trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); + __trace_function(tr, CALLER_ADDR0, parent_ip, trace_ctx); /* Skip 5 functions to get to the irq/preempt enable function */ - __trace_stack(tr, flags, 5, pc); + __trace_stack(tr, trace_ctx, 5); if (data->critical_sequence != max_sequence) goto out_unlock; @ kernel/trace/trace_irqsoff.c:367 @ check_critical_timing(struct trace_array *tr, out: data->critical_sequence = max_sequence; data->preempt_timestamp = ftrace_now(cpu); - __trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); + __trace_function(tr, CALLER_ADDR0, parent_ip, trace_ctx); } static nokprobe_inline void -start_critical_timing(unsigned long ip, unsigned long parent_ip, int pc) +start_critical_timing(unsigned long ip, unsigned long parent_ip) { int cpu; struct trace_array *tr = irqsoff_trace; struct trace_array_cpu *data; - unsigned long flags; if (!tracer_enabled || !tracing_is_enabled()) return; @ kernel/trace/trace_irqsoff.c:396 @ start_critical_timing(unsigned long ip, unsigned long parent_ip, int pc) data->preempt_timestamp = ftrace_now(cpu); data->critical_start = parent_ip ? : ip; - local_save_flags(flags); - - __trace_function(tr, ip, parent_ip, flags, pc); + __trace_function(tr, ip, parent_ip, tracing_gen_ctx()); per_cpu(tracing_cpu, cpu) = 1; @ kernel/trace/trace_irqsoff.c:404 @ start_critical_timing(unsigned long ip, unsigned long parent_ip, int pc) } static nokprobe_inline void -stop_critical_timing(unsigned long ip, unsigned long parent_ip, int pc) +stop_critical_timing(unsigned long ip, unsigned long parent_ip) { int cpu; struct trace_array *tr = irqsoff_trace; struct trace_array_cpu *data; - unsigned long flags; + unsigned int trace_ctx; cpu = raw_smp_processor_id(); /* Always clear the tracing cpu on stopping the trace */ @ kernel/trace/trace_irqsoff.c:429 @ stop_critical_timing(unsigned long ip, unsigned long parent_ip, int pc) atomic_inc(&data->disabled); - local_save_flags(flags); - __trace_function(tr, ip, parent_ip, flags, pc); + trace_ctx = tracing_gen_ctx(); + __trace_function(tr, ip, parent_ip, trace_ctx); check_critical_timing(tr, data, parent_ip ? : ip, cpu); data->critical_start = 0; atomic_dec(&data->disabled); @ kernel/trace/trace_irqsoff.c:439 @ stop_critical_timing(unsigned long ip, unsigned long parent_ip, int pc) /* start and stop critical timings used to for stoppage (in idle) */ void start_critical_timings(void) { - int pc = preempt_count(); - - if (preempt_trace(pc) || irq_trace()) - start_critical_timing(CALLER_ADDR0, CALLER_ADDR1, pc); + if (preempt_trace(preempt_count()) || irq_trace()) + start_critical_timing(CALLER_ADDR0, CALLER_ADDR1); } EXPORT_SYMBOL_GPL(start_critical_timings); NOKPROBE_SYMBOL(start_critical_timings); void stop_critical_timings(void) { - int pc = preempt_count(); - - if (preempt_trace(pc) || irq_trace()) - stop_critical_timing(CALLER_ADDR0, CALLER_ADDR1, pc); + if (preempt_trace(preempt_count()) || irq_trace()) + stop_critical_timing(CALLER_ADDR0, CALLER_ADDR1); } EXPORT_SYMBOL_GPL(stop_critical_timings); NOKPROBE_SYMBOL(stop_critical_timings); @ kernel/trace/trace_irqsoff.c:610 @ static void irqsoff_tracer_stop(struct trace_array *tr) */ void tracer_hardirqs_on(unsigned long a0, unsigned long a1) { - unsigned int pc = preempt_count(); - - if (!preempt_trace(pc) && irq_trace()) - stop_critical_timing(a0, a1, pc); + if (!preempt_trace(preempt_count()) && irq_trace()) + stop_critical_timing(a0, a1); } NOKPROBE_SYMBOL(tracer_hardirqs_on); void tracer_hardirqs_off(unsigned long a0, unsigned long a1) { - unsigned int pc = preempt_count(); - - if (!preempt_trace(pc) && irq_trace()) - start_critical_timing(a0, a1, pc); + if (!preempt_trace(preempt_count()) && irq_trace()) + start_critical_timing(a0, a1); } NOKPROBE_SYMBOL(tracer_hardirqs_off); @ kernel/trace/trace_irqsoff.c:658 @ static struct tracer irqsoff_tracer __read_mostly = #ifdef CONFIG_PREEMPT_TRACER void tracer_preempt_on(unsigned long a0, unsigned long a1) { - int pc = preempt_count(); - - if (preempt_trace(pc) && !irq_trace()) - stop_critical_timing(a0, a1, pc); + if (preempt_trace(preempt_count()) && !irq_trace()) + stop_critical_timing(a0, a1); } void tracer_preempt_off(unsigned long a0, unsigned long a1) { - int pc = preempt_count(); - - if (preempt_trace(pc) && !irq_trace()) - start_critical_timing(a0, a1, pc); + if (preempt_trace(preempt_count()) && !irq_trace()) + start_critical_timing(a0, a1); } static int preemptoff_tracer_init(struct trace_array *tr) @ kernel/trace/trace_kprobe.c:1393 @ __kprobe_trace_func(struct trace_kprobe *tk, struct pt_regs *regs, if (trace_trigger_soft_disabled(trace_file)) return; - local_save_flags(fbuffer.flags); - fbuffer.pc = preempt_count(); + fbuffer.trace_ctx = tracing_gen_ctx(); fbuffer.trace_file = trace_file; dsize = __get_data_size(&tk->tp, regs); @ kernel/trace/trace_kprobe.c:1402 @ __kprobe_trace_func(struct trace_kprobe *tk, struct pt_regs *regs, trace_event_buffer_lock_reserve(&fbuffer.buffer, trace_file, call->event.type, sizeof(*entry) + tk->tp.size + dsize, - fbuffer.flags, fbuffer.pc); + fbuffer.trace_ctx); if (!fbuffer.event) return; @ kernel/trace/trace_kprobe.c:1440 @ __kretprobe_trace_func(struct trace_kprobe *tk, struct kretprobe_instance *ri, if (trace_trigger_soft_disabled(trace_file)) return; - local_save_flags(fbuffer.flags); - fbuffer.pc = preempt_count(); + fbuffer.trace_ctx = tracing_gen_ctx(); fbuffer.trace_file = trace_file; dsize = __get_data_size(&tk->tp, regs); @ kernel/trace/trace_kprobe.c:1448 @ __kretprobe_trace_func(struct trace_kprobe *tk, struct kretprobe_instance *ri, trace_event_buffer_lock_reserve(&fbuffer.buffer, trace_file, call->event.type, sizeof(*entry) + tk->tp.size + dsize, - fbuffer.flags, fbuffer.pc); + fbuffer.trace_ctx); if (!fbuffer.event) return; @ kernel/trace/trace_mmiotrace.c:303 @ static void __trace_mmiotrace_rw(struct trace_array *tr, struct trace_buffer *buffer = tr->array_buffer.buffer; struct ring_buffer_event *event; struct trace_mmiotrace_rw *entry; - int pc = preempt_count(); + unsigned int trace_ctx; + trace_ctx = tracing_gen_ctx_flags(0); event = trace_buffer_lock_reserve(buffer, TRACE_MMIO_RW, - sizeof(*entry), 0, pc); + sizeof(*entry), trace_ctx); if (!event) { atomic_inc(&dropped_count); return; @ kernel/trace/trace_mmiotrace.c:316 @ static void __trace_mmiotrace_rw(struct trace_array *tr, entry->rw = *rw; if (!call_filter_check_discard(call, entry, buffer, event)) - trace_buffer_unlock_commit(tr, buffer, event, 0, pc); + trace_buffer_unlock_commit(tr, buffer, event, trace_ctx); } void mmio_trace_rw(struct mmiotrace_rw *rw) @ kernel/trace/trace_mmiotrace.c:334 @ static void __trace_mmiotrace_map(struct trace_array *tr, struct trace_buffer *buffer = tr->array_buffer.buffer; struct ring_buffer_event *event; struct trace_mmiotrace_map *entry; - int pc = preempt_count(); + unsigned int trace_ctx; + trace_ctx = tracing_gen_ctx_flags(0); event = trace_buffer_lock_reserve(buffer, TRACE_MMIO_MAP, - sizeof(*entry), 0, pc); + sizeof(*entry), trace_ctx); if (!event) { atomic_inc(&dropped_count); return; @ kernel/trace/trace_mmiotrace.c:347 @ static void __trace_mmiotrace_map(struct trace_array *tr, entry->map = *map; if (!call_filter_check_discard(call, entry, buffer, event)) - trace_buffer_unlock_commit(tr, buffer, event, 0, pc); + trace_buffer_unlock_commit(tr, buffer, event, trace_ctx); } void mmio_trace_mapping(struct mmiotrace_map *map) @ kernel/trace/trace_output.c:444 @ int trace_print_lat_fmt(struct trace_seq *s, struct trace_entry *entry) { char hardsoft_irq; char need_resched; + char need_resched_lazy; char irqs_off; int hardirq; int softirq; @ kernel/trace/trace_output.c:475 @ int trace_print_lat_fmt(struct trace_seq *s, struct trace_entry *entry) break; } + need_resched_lazy = + (entry->flags & TRACE_FLAG_NEED_RESCHED_LAZY) ? 'L' : '.'; + hardsoft_irq = (nmi && hardirq) ? 'Z' : nmi ? 'z' : @ kernel/trace/trace_output.c:486 @ int trace_print_lat_fmt(struct trace_seq *s, struct trace_entry *entry) softirq ? 's' : '.' ; - trace_seq_printf(s, "%c%c%c", - irqs_off, need_resched, hardsoft_irq); + trace_seq_printf(s, "%c%c%c%c", + irqs_off, need_resched, need_resched_lazy, + hardsoft_irq); if (entry->preempt_count) trace_seq_printf(s, "%x", entry->preempt_count); else trace_seq_putc(s, '.'); + if (entry->preempt_lazy_count) + trace_seq_printf(s, "%x", entry->preempt_lazy_count); + else + trace_seq_putc(s, '.'); + + if (entry->migrate_disable) + trace_seq_printf(s, "%x", entry->migrate_disable); + else + trace_seq_putc(s, '.'); + return !trace_seq_has_overflowed(s); } @ kernel/trace/trace_sched_wakeup.c:70 @ static bool function_enabled; static int func_prolog_preempt_disable(struct trace_array *tr, struct trace_array_cpu **data, - int *pc) + unsigned int *trace_ctx) { long disabled; int cpu; @ kernel/trace/trace_sched_wakeup.c:78 @ func_prolog_preempt_disable(struct trace_array *tr, if (likely(!wakeup_task)) return 0; - *pc = preempt_count(); + *trace_ctx = tracing_gen_ctx(); preempt_disable_notrace(); cpu = raw_smp_processor_id(); @ kernel/trace/trace_sched_wakeup.c:119 @ static int wakeup_graph_entry(struct ftrace_graph_ent *trace) { struct trace_array *tr = wakeup_trace; struct trace_array_cpu *data; - unsigned long flags; - int pc, ret = 0; + unsigned int trace_ctx; + int ret = 0; if (ftrace_graph_ignore_func(trace)) return 0; @ kernel/trace/trace_sched_wakeup.c:134 @ static int wakeup_graph_entry(struct ftrace_graph_ent *trace) if (ftrace_graph_notrace_addr(trace->func)) return 1; - if (!func_prolog_preempt_disable(tr, &data, &pc)) + if (!func_prolog_preempt_disable(tr, &data, &trace_ctx)) return 0; - local_save_flags(flags); - ret = __trace_graph_entry(tr, trace, flags, pc); + ret = __trace_graph_entry(tr, trace, trace_ctx); atomic_dec(&data->disabled); preempt_enable_notrace(); @ kernel/trace/trace_sched_wakeup.c:148 @ static void wakeup_graph_return(struct ftrace_graph_ret *trace) { struct trace_array *tr = wakeup_trace; struct trace_array_cpu *data; - unsigned long flags; - int pc; + unsigned int trace_ctx; ftrace_graph_addr_finish(trace); - if (!func_prolog_preempt_disable(tr, &data, &pc)) + if (!func_prolog_preempt_disable(tr, &data, &trace_ctx)) return; - local_save_flags(flags); - __trace_graph_return(tr, trace, flags, pc); + __trace_graph_return(tr, trace, trace_ctx); atomic_dec(&data->disabled); preempt_enable_notrace(); @ kernel/trace/trace_sched_wakeup.c:217 @ wakeup_tracer_call(unsigned long ip, unsigned long parent_ip, struct trace_array *tr = wakeup_trace; struct trace_array_cpu *data; unsigned long flags; - int pc; + unsigned int trace_ctx; - if (!func_prolog_preempt_disable(tr, &data, &pc)) + if (!func_prolog_preempt_disable(tr, &data, &trace_ctx)) return; local_irq_save(flags); - trace_function(tr, ip, parent_ip, flags, pc); + trace_function(tr, ip, parent_ip, trace_ctx); local_irq_restore(flags); atomic_dec(&data->disabled); @ kernel/trace/trace_sched_wakeup.c:303 @ static void wakeup_print_header(struct seq_file *s) static void __trace_function(struct trace_array *tr, unsigned long ip, unsigned long parent_ip, - unsigned long flags, int pc) + unsigned int trace_ctx) { if (is_graph(tr)) - trace_graph_function(tr, ip, parent_ip, flags, pc); + trace_graph_function(tr, ip, parent_ip, trace_ctx); else - trace_function(tr, ip, parent_ip, flags, pc); + trace_function(tr, ip, parent_ip, trace_ctx); } static int wakeup_flag_changed(struct trace_array *tr, u32 mask, int set) @ kernel/trace/trace_sched_wakeup.c:375 @ static void tracing_sched_switch_trace(struct trace_array *tr, struct task_struct *prev, struct task_struct *next, - unsigned long flags, int pc) + unsigned int trace_ctx) { struct trace_event_call *call = &event_context_switch; struct trace_buffer *buffer = tr->array_buffer.buffer; @ kernel/trace/trace_sched_wakeup.c:383 @ tracing_sched_switch_trace(struct trace_array *tr, struct ctx_switch_entry *entry; event = trace_buffer_lock_reserve(buffer, TRACE_CTX, - sizeof(*entry), flags, pc); + sizeof(*entry), trace_ctx); if (!event) return; entry = ring_buffer_event_data(event); @ kernel/trace/trace_sched_wakeup.c:396 @ tracing_sched_switch_trace(struct trace_array *tr, entry->next_cpu = task_cpu(next); if (!call_filter_check_discard(call, entry, buffer, event)) - trace_buffer_unlock_commit(tr, buffer, event, flags, pc); + trace_buffer_unlock_commit(tr, buffer, event, trace_ctx); } static void tracing_sched_wakeup_trace(struct trace_array *tr, struct task_struct *wakee, struct task_struct *curr, - unsigned long flags, int pc) + unsigned int trace_ctx) { struct trace_event_call *call = &event_wakeup; struct ring_buffer_event *event; @ kernel/trace/trace_sched_wakeup.c:411 @ tracing_sched_wakeup_trace(struct trace_array *tr, struct trace_buffer *buffer = tr->array_buffer.buffer; event = trace_buffer_lock_reserve(buffer, TRACE_WAKE, - sizeof(*entry), flags, pc); + sizeof(*entry), trace_ctx); if (!event) return; entry = ring_buffer_event_data(event); @ kernel/trace/trace_sched_wakeup.c:424 @ tracing_sched_wakeup_trace(struct trace_array *tr, entry->next_cpu = task_cpu(wakee); if (!call_filter_check_discard(call, entry, buffer, event)) - trace_buffer_unlock_commit(tr, buffer, event, flags, pc); + trace_buffer_unlock_commit(tr, buffer, event, trace_ctx); } static void notrace @ kernel/trace/trace_sched_wakeup.c:436 @ probe_wakeup_sched_switch(void *ignore, bool preempt, unsigned long flags; long disabled; int cpu; - int pc; + unsigned int trace_ctx; tracing_record_cmdline(prev); @ kernel/trace/trace_sched_wakeup.c:455 @ probe_wakeup_sched_switch(void *ignore, bool preempt, if (next != wakeup_task) return; - pc = preempt_count(); - /* disable local data, not wakeup_cpu data */ cpu = raw_smp_processor_id(); disabled = atomic_inc_return(&per_cpu_ptr(wakeup_trace->array_buffer.data, cpu)->disabled); @ kernel/trace/trace_sched_wakeup.c:462 @ probe_wakeup_sched_switch(void *ignore, bool preempt, goto out; local_irq_save(flags); + trace_ctx = tracing_gen_ctx_flags(flags); + arch_spin_lock(&wakeup_lock); /* We could race with grabbing wakeup_lock */ @ kernel/trace/trace_sched_wakeup.c:473 @ probe_wakeup_sched_switch(void *ignore, bool preempt, /* The task we are waiting for is waking up */ data = per_cpu_ptr(wakeup_trace->array_buffer.data, wakeup_cpu); - __trace_function(wakeup_trace, CALLER_ADDR0, CALLER_ADDR1, flags, pc); - tracing_sched_switch_trace(wakeup_trace, prev, next, flags, pc); - __trace_stack(wakeup_trace, flags, 0, pc); + __trace_function(wakeup_trace, CALLER_ADDR0, CALLER_ADDR1, trace_ctx); + tracing_sched_switch_trace(wakeup_trace, prev, next, trace_ctx); + __trace_stack(wakeup_trace, trace_ctx, 0); T0 = data->preempt_timestamp; T1 = ftrace_now(cpu); @ kernel/trace/trace_sched_wakeup.c:527 @ probe_wakeup(void *ignore, struct task_struct *p) { struct trace_array_cpu *data; int cpu = smp_processor_id(); - unsigned long flags; long disabled; - int pc; + unsigned int trace_ctx; if (likely(!tracer_enabled)) return; @ kernel/trace/trace_sched_wakeup.c:549 @ probe_wakeup(void *ignore, struct task_struct *p) (!dl_task(p) && (p->prio >= wakeup_prio || p->prio >= current->prio))) return; - pc = preempt_count(); disabled = atomic_inc_return(&per_cpu_ptr(wakeup_trace->array_buffer.data, cpu)->disabled); if (unlikely(disabled != 1)) goto out; + trace_ctx = tracing_gen_ctx(); + /* interrupts should be off from try_to_wake_up */ arch_spin_lock(&wakeup_lock); @ kernel/trace/trace_sched_wakeup.c:581 @ probe_wakeup(void *ignore, struct task_struct *p) wakeup_task = get_task_struct(p); - local_save_flags(flags); - data = per_cpu_ptr(wakeup_trace->array_buffer.data, wakeup_cpu); data->preempt_timestamp = ftrace_now(cpu); - tracing_sched_wakeup_trace(wakeup_trace, p, current, flags, pc); - __trace_stack(wakeup_trace, flags, 0, pc); + tracing_sched_wakeup_trace(wakeup_trace, p, current, trace_ctx); + __trace_stack(wakeup_trace, trace_ctx, 0); /* * We must be careful in using CALLER_ADDR2. But since wake_up * is not called by an assembly function (where as schedule is) * it should be safe to use it here. */ - __trace_function(wakeup_trace, CALLER_ADDR1, CALLER_ADDR2, flags, pc); + __trace_function(wakeup_trace, CALLER_ADDR1, CALLER_ADDR2, trace_ctx); out_locked: arch_spin_unlock(&wakeup_lock); @ kernel/trace/trace_syscalls.c:301 @ static void ftrace_syscall_enter(void *data, struct pt_regs *regs, long id) struct syscall_metadata *sys_data; struct ring_buffer_event *event; struct trace_buffer *buffer; - unsigned long irq_flags; + unsigned int trace_ctx; unsigned long args[6]; - int pc; int syscall_nr; int size; @ kernel/trace/trace_syscalls.c:324 @ static void ftrace_syscall_enter(void *data, struct pt_regs *regs, long id) size = sizeof(*entry) + sizeof(unsigned long) * sys_data->nb_args; - local_save_flags(irq_flags); - pc = preempt_count(); + trace_ctx = tracing_gen_ctx(); buffer = tr->array_buffer.buffer; event = trace_buffer_lock_reserve(buffer, - sys_data->enter_event->event.type, size, irq_flags, pc); + sys_data->enter_event->event.type, size, trace_ctx); if (!event) return; @ kernel/trace/trace_syscalls.c:338 @ static void ftrace_syscall_enter(void *data, struct pt_regs *regs, long id) memcpy(entry->args, args, sizeof(unsigned long) * sys_data->nb_args); event_trigger_unlock_commit(trace_file, buffer, event, entry, - irq_flags, pc); + trace_ctx); } static void ftrace_syscall_exit(void *data, struct pt_regs *regs, long ret) @ kernel/trace/trace_syscalls.c:349 @ static void ftrace_syscall_exit(void *data, struct pt_regs *regs, long ret) struct syscall_metadata *sys_data; struct ring_buffer_event *event; struct trace_buffer *buffer; - unsigned long irq_flags; - int pc; + unsigned int trace_ctx; int syscall_nr; syscall_nr = trace_get_syscall_nr(current, regs); @ kernel/trace/trace_syscalls.c:368 @ static void ftrace_syscall_exit(void *data, struct pt_regs *regs, long ret) if (!sys_data) return; - local_save_flags(irq_flags); - pc = preempt_count(); + trace_ctx = tracing_gen_ctx(); buffer = tr->array_buffer.buffer; event = trace_buffer_lock_reserve(buffer, sys_data->exit_event->event.type, sizeof(*entry), - irq_flags, pc); + trace_ctx); if (!event) return; @ kernel/trace/trace_syscalls.c:382 @ static void ftrace_syscall_exit(void *data, struct pt_regs *regs, long ret) entry->ret = syscall_get_return_value(current, regs); event_trigger_unlock_commit(trace_file, buffer, event, entry, - irq_flags, pc); + trace_ctx); } static int reg_event_syscall_enter(struct trace_event_file *file, @ kernel/trace/trace_uprobe.c:968 @ static void __uprobe_trace_func(struct trace_uprobe *tu, esize = SIZEOF_TRACE_ENTRY(is_ret_probe(tu)); size = esize + tu->tp.size + dsize; event = trace_event_buffer_lock_reserve(&buffer, trace_file, - call->event.type, size, 0, 0); + call->event.type, size, 0); if (!event) return; @ kernel/trace/trace_uprobe.c:984 @ static void __uprobe_trace_func(struct trace_uprobe *tu, memcpy(data, ucb->buf, tu->tp.size + dsize); - event_trigger_unlock_commit(trace_file, buffer, event, entry, 0, 0); + event_trigger_unlock_commit(trace_file, buffer, event, entry, 0); } /* uprobe handler */ @ kernel/workqueue.c:4922 @ static void unbind_workers(int cpu) pool->flags |= POOL_DISASSOCIATED; raw_spin_unlock_irq(&pool->lock); + + for_each_pool_worker(worker, pool) + WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_active_mask) < 0); + mutex_unlock(&wq_pool_attach_mutex); /* @ lib/Kconfig.debug:1331 @ config DEBUG_ATOMIC_SLEEP config DEBUG_LOCKING_API_SELFTESTS bool "Locking API boot-time self-tests" - depends on DEBUG_KERNEL + depends on DEBUG_KERNEL && !PREEMPT_RT help Say Y here if you want the kernel to run a short self-test during bootup. The self-test checks whether common types of locking bugs @ lib/bug.c:205 @ enum bug_trap_type report_bug(unsigned long bugaddr, struct pt_regs *regs) else pr_crit("Kernel BUG at %pB [verbose debug info unavailable]\n", (void *)bugaddr); + pr_flush(1000, true); return BUG_TRAP_TYPE_BUG; } @ lib/cpumask.c:264 @ int cpumask_any_and_distribute(const struct cpumask *src1p, return next; } EXPORT_SYMBOL(cpumask_any_and_distribute); + +int cpumask_any_distribute(const struct cpumask *srcp) +{ + int next, prev; + + /* NOTE: our first selection will skip 0. */ + prev = __this_cpu_read(distribute_cpu_mask_prev); + + next = cpumask_next(prev, srcp); + if (next >= nr_cpu_ids) + next = cpumask_first(srcp); + + if (next < nr_cpu_ids) + __this_cpu_write(distribute_cpu_mask_prev, next); + + return next; +} +EXPORT_SYMBOL(cpumask_any_distribute); @ lib/debugobjects.c:560 @ __debug_object_init(void *addr, const struct debug_obj_descr *descr, int onstack struct debug_obj *obj; unsigned long flags; - fill_pool(); +#ifdef CONFIG_PREEMPT_RT + if (preempt_count() == 0 && !irqs_disabled()) +#endif + fill_pool(); db = get_bucket((unsigned long) addr); @ lib/dump_stack.c:15 @ #include <linux/atomic.h> #include <linux/kexec.h> #include <linux/utsname.h> +#include <linux/stop_machine.h> static char dump_stack_arch_desc_str[128]; @ lib/dump_stack.c:61 @ void dump_stack_print_info(const char *log_lvl) log_lvl, dump_stack_arch_desc_str); print_worker_info(log_lvl, current); + print_stop_info(log_lvl, current); } /** @ lib/irq_poll.c:40 @ void irq_poll_sched(struct irq_poll *iop) list_add_tail(&iop->list, this_cpu_ptr(&blk_cpu_iopoll)); raise_softirq_irqoff(IRQ_POLL_SOFTIRQ); local_irq_restore(flags); + preempt_check_resched_rt(); } EXPORT_SYMBOL(irq_poll_sched); @ lib/irq_poll.c:76 @ void irq_poll_complete(struct irq_poll *iop) local_irq_save(flags); __irq_poll_complete(iop); local_irq_restore(flags); + preempt_check_resched_rt(); } EXPORT_SYMBOL(irq_poll_complete); @ lib/irq_poll.c:101 @ static void __latent_entropy irq_poll_softirq(struct softirq_action *h) } local_irq_enable(); + preempt_check_resched_rt(); /* Even though interrupts have been re-enabled, this * access is safe because interrupts can only add new @ lib/irq_poll.c:139 @ static void __latent_entropy irq_poll_softirq(struct softirq_action *h) __raise_softirq_irqoff(IRQ_POLL_SOFTIRQ); local_irq_enable(); + preempt_check_resched_rt(); } /** @ lib/irq_poll.c:203 @ static int irq_poll_cpu_dead(unsigned int cpu) this_cpu_ptr(&blk_cpu_iopoll)); __raise_softirq_irqoff(IRQ_POLL_SOFTIRQ); local_irq_enable(); + preempt_check_resched_rt(); return 0; } @ lib/locking-selftest.c:790 @ GENERATE_TESTCASE(init_held_rtmutex); #include "locking-selftest-spin-hardirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe1_hard_spin) +#ifndef CONFIG_PREEMPT_RT + #include "locking-selftest-rlock-hardirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe1_hard_rlock) @ lib/locking-selftest.c:807 @ GENERATE_PERMUTATIONS_2_EVENTS(irqsafe1_soft_rlock) #include "locking-selftest-wlock-softirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe1_soft_wlock) +#endif + #undef E1 #undef E2 +#ifndef CONFIG_PREEMPT_RT /* * Enabling hardirqs with a softirq-safe lock held: */ @ lib/locking-selftest.c:845 @ GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2A_rlock) #undef E1 #undef E2 +#endif + /* * Enabling irqs with an irq-safe lock held: */ @ lib/locking-selftest.c:870 @ GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2A_rlock) #include "locking-selftest-spin-hardirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2B_hard_spin) +#ifndef CONFIG_PREEMPT_RT + #include "locking-selftest-rlock-hardirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2B_hard_rlock) @ lib/locking-selftest.c:887 @ GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2B_soft_rlock) #include "locking-selftest-wlock-softirq.h" GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2B_soft_wlock) +#endif + #undef E1 #undef E2 @ lib/locking-selftest.c:920 @ GENERATE_PERMUTATIONS_2_EVENTS(irqsafe2B_soft_wlock) #include "locking-selftest-spin-hardirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe3_hard_spin) +#ifndef CONFIG_PREEMPT_RT + #include "locking-selftest-rlock-hardirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe3_hard_rlock) @ lib/locking-selftest.c:937 @ GENERATE_PERMUTATIONS_3_EVENTS(irqsafe3_soft_rlock) #include "locking-selftest-wlock-softirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe3_soft_wlock) +#endif + #undef E1 #undef E2 #undef E3 @ lib/locking-selftest.c:972 @ GENERATE_PERMUTATIONS_3_EVENTS(irqsafe3_soft_wlock) #include "locking-selftest-spin-hardirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe4_hard_spin) +#ifndef CONFIG_PREEMPT_RT + #include "locking-selftest-rlock-hardirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe4_hard_rlock) @ lib/locking-selftest.c:989 @ GENERATE_PERMUTATIONS_3_EVENTS(irqsafe4_soft_rlock) #include "locking-selftest-wlock-softirq.h" GENERATE_PERMUTATIONS_3_EVENTS(irqsafe4_soft_wlock) +#endif + #undef E1 #undef E2 #undef E3 +#ifndef CONFIG_PREEMPT_RT + /* * read-lock / write-lock irq inversion. * @ lib/locking-selftest.c:1186 @ GENERATE_PERMUTATIONS_3_EVENTS(W1W2_R2R3_R3W1) #undef E1 #undef E2 #undef E3 + +#endif + +#ifndef CONFIG_PREEMPT_RT + /* * read-lock / write-lock recursion that is actually safe. */ @ lib/locking-selftest.c:1237 @ GENERATE_PERMUTATIONS_3_EVENTS(irq_read_recursion_soft_wlock) #undef E2 #undef E3 +#endif + /* * read-lock / write-lock recursion that is unsafe. */ @ lib/locking-selftest.c:2487 @ void locking_selftest(void) printk(" --------------------------------------------------------------------------\n"); +#ifndef CONFIG_PREEMPT_RT /* * irq-context testcases: */ @ lib/locking-selftest.c:2502 @ void locking_selftest(void) DO_TESTCASE_6x2x2RW("irq read-recursion #2", irq_read_recursion2); DO_TESTCASE_6x2x2RW("irq read-recursion #3", irq_read_recursion3); +#else + /* On -rt, we only do hardirq context test for raw spinlock */ + DO_TESTCASE_1B("hard-irqs-on + irq-safe-A", irqsafe1_hard_spin, 12); + DO_TESTCASE_1B("hard-irqs-on + irq-safe-A", irqsafe1_hard_spin, 21); + + DO_TESTCASE_1B("hard-safe-A + irqs-on", irqsafe2B_hard_spin, 12); + DO_TESTCASE_1B("hard-safe-A + irqs-on", irqsafe2B_hard_spin, 21); + + DO_TESTCASE_1B("hard-safe-A + unsafe-B #1", irqsafe3_hard_spin, 123); + DO_TESTCASE_1B("hard-safe-A + unsafe-B #1", irqsafe3_hard_spin, 132); + DO_TESTCASE_1B("hard-safe-A + unsafe-B #1", irqsafe3_hard_spin, 213); + DO_TESTCASE_1B("hard-safe-A + unsafe-B #1", irqsafe3_hard_spin, 231); + DO_TESTCASE_1B("hard-safe-A + unsafe-B #1", irqsafe3_hard_spin, 312); + DO_TESTCASE_1B("hard-safe-A + unsafe-B #1", irqsafe3_hard_spin, 321); + + DO_TESTCASE_1B("hard-safe-A + unsafe-B #2", irqsafe4_hard_spin, 123); + DO_TESTCASE_1B("hard-safe-A + unsafe-B #2", irqsafe4_hard_spin, 132); + DO_TESTCASE_1B("hard-safe-A + unsafe-B #2", irqsafe4_hard_spin, 213); + DO_TESTCASE_1B("hard-safe-A + unsafe-B #2", irqsafe4_hard_spin, 231); + DO_TESTCASE_1B("hard-safe-A + unsafe-B #2", irqsafe4_hard_spin, 312); + DO_TESTCASE_1B("hard-safe-A + unsafe-B #2", irqsafe4_hard_spin, 321); +#endif ww_tests(); force_read_lock_recursive = 0; @ lib/nmi_backtrace.c:78 @ void nmi_trigger_cpumask_backtrace(const cpumask_t *mask, touch_softlockup_watchdog(); } - /* - * Force flush any remote buffers that might be stuck in IRQ context - * and therefore could not run their irq_work. - */ - printk_safe_flush(); - clear_bit_unlock(0, &backtrace_flag); put_cpu(); } @ lib/scatterlist.c:895 @ void sg_miter_stop(struct sg_mapping_iter *miter) flush_kernel_dcache_page(miter->page); if (miter->__flags & SG_MITER_ATOMIC) { - WARN_ON_ONCE(preemptible()); + WARN_ON_ONCE(!pagefault_disabled()); kunmap_atomic(miter->addr); } else kunmap(miter->page); @ lib/smp_processor_id.c:29 @ unsigned int check_preemption_disabled(const char *what1, const char *what2) if (current->nr_cpus_allowed == 1) goto out; +#ifdef CONFIG_SMP + if (current->migration_disabled) + goto out; +#endif + /* * It is valid to assume CPU-locality during early bootup: */ @ lib/test_lockup.c:483 @ static int __init test_lockup_init(void) return -EINVAL; #ifdef CONFIG_DEBUG_SPINLOCK +#ifdef CONFIG_PREEMPT_RT + if (test_magic(lock_spinlock_ptr, + offsetof(spinlock_t, lock.wait_lock.magic), + SPINLOCK_MAGIC) || + test_magic(lock_rwlock_ptr, + offsetof(rwlock_t, rtmutex.wait_lock.magic), + SPINLOCK_MAGIC) || + test_magic(lock_mutex_ptr, + offsetof(struct mutex, lock.wait_lock.magic), + SPINLOCK_MAGIC) || + test_magic(lock_rwsem_ptr, + offsetof(struct rw_semaphore, rtmutex.wait_lock.magic), + SPINLOCK_MAGIC)) + return -EINVAL; +#else if (test_magic(lock_spinlock_ptr, offsetof(spinlock_t, rlock.magic), SPINLOCK_MAGIC) || @ lib/test_lockup.c:511 @ static int __init test_lockup_init(void) offsetof(struct rw_semaphore, wait_lock.magic), SPINLOCK_MAGIC)) return -EINVAL; +#endif #endif if ((wait_state != TASK_RUNNING || @ localversion-rt:1 @ +-rt60 @ mm/Kconfig:390 @ config NOMMU_INITIAL_TRIM_EXCESS config TRANSPARENT_HUGEPAGE bool "Transparent Hugepage Support" - depends on HAVE_ARCH_TRANSPARENT_HUGEPAGE + depends on HAVE_ARCH_TRANSPARENT_HUGEPAGE && !PREEMPT_RT select COMPACTION select XARRAY_MULTI help @ mm/Kconfig:862 @ config ARCH_HAS_HUGEPD config MAPPING_DIRTY_HELPERS bool +config KMAP_LOCAL + bool + endmenu @ mm/highmem.c:34 @ #include <asm/tlbflush.h> #include <linux/vmalloc.h> -#if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32) -DEFINE_PER_CPU(int, __kmap_atomic_idx); -#endif - /* * Virtual_count is not a pure "count". * 0 means that it is not mapped, and has not been mapped @ mm/highmem.c:107 @ static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color) atomic_long_t _totalhigh_pages __read_mostly; EXPORT_SYMBOL(_totalhigh_pages); -EXPORT_PER_CPU_SYMBOL(__kmap_atomic_idx); - -unsigned int nr_free_highpages (void) +unsigned int __nr_free_highpages (void) { struct zone *zone; unsigned int pages = 0; @ mm/highmem.c:144 @ pte_t * pkmap_page_table; do { spin_unlock(&kmap_lock); (void)(flags); } while (0) #endif -struct page *kmap_to_page(void *vaddr) +struct page *__kmap_to_page(void *vaddr) { unsigned long addr = (unsigned long)vaddr; @ mm/highmem.c:155 @ struct page *kmap_to_page(void *vaddr) return virt_to_page(addr); } -EXPORT_SYMBOL(kmap_to_page); +EXPORT_SYMBOL(__kmap_to_page); static void flush_all_zero_pkmaps(void) { @ mm/highmem.c:197 @ static void flush_all_zero_pkmaps(void) flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP)); } -/** - * kmap_flush_unused - flush all unused kmap mappings in order to remove stray mappings - */ -void kmap_flush_unused(void) +void __kmap_flush_unused(void) { lock_kmap(); flush_all_zero_pkmaps(); @ mm/highmem.c:361 @ void kunmap_high(struct page *page) if (need_wakeup) wake_up(pkmap_map_wait); } - EXPORT_SYMBOL(kunmap_high); -#endif /* CONFIG_HIGHMEM */ +#endif /* CONFIG_HIGHMEM */ + +#ifdef CONFIG_KMAP_LOCAL + +#include <asm/kmap_size.h> + +/* + * With DEBUG_HIGHMEM the stack depth is doubled and every second + * slot is unused which acts as a guard page + */ +#ifdef CONFIG_DEBUG_HIGHMEM +# define KM_INCR 2 +#else +# define KM_INCR 1 +#endif + +static inline int kmap_local_idx_push(void) +{ + WARN_ON_ONCE(in_irq() && !irqs_disabled()); + current->kmap_ctrl.idx += KM_INCR; + BUG_ON(current->kmap_ctrl.idx >= KM_MAX_IDX); + return current->kmap_ctrl.idx - 1; +} + +static inline int kmap_local_idx(void) +{ + return current->kmap_ctrl.idx - 1; +} + +static inline void kmap_local_idx_pop(void) +{ + current->kmap_ctrl.idx -= KM_INCR; + BUG_ON(current->kmap_ctrl.idx < 0); +} + +#ifndef arch_kmap_local_post_map +# define arch_kmap_local_post_map(vaddr, pteval) do { } while (0) +#endif + +#ifndef arch_kmap_local_pre_unmap +# define arch_kmap_local_pre_unmap(vaddr) do { } while (0) +#endif + +#ifndef arch_kmap_local_post_unmap +# define arch_kmap_local_post_unmap(vaddr) do { } while (0) +#endif + +#ifndef arch_kmap_local_map_idx +#define arch_kmap_local_map_idx(idx, pfn) kmap_local_calc_idx(idx) +#endif + +#ifndef arch_kmap_local_unmap_idx +#define arch_kmap_local_unmap_idx(idx, vaddr) kmap_local_calc_idx(idx) +#endif + +#ifndef arch_kmap_local_high_get +static inline void *arch_kmap_local_high_get(struct page *page) +{ + return NULL; +} +#endif + +/* Unmap a local mapping which was obtained by kmap_high_get() */ +static inline bool kmap_high_unmap_local(unsigned long vaddr) +{ +#ifdef ARCH_NEEDS_KMAP_HIGH_GET + if (vaddr >= PKMAP_ADDR(0) && vaddr < PKMAP_ADDR(LAST_PKMAP)) { + kunmap_high(pte_page(pkmap_page_table[PKMAP_NR(vaddr)])); + return true; + } +#endif + return false; +} + +static inline int kmap_local_calc_idx(int idx) +{ + return idx + KM_MAX_IDX * smp_processor_id(); +} + +static pte_t *__kmap_pte; + +static pte_t *kmap_get_pte(void) +{ + if (!__kmap_pte) + __kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN)); + return __kmap_pte; +} + +void *__kmap_local_pfn_prot(unsigned long pfn, pgprot_t prot) +{ + pte_t pteval, *kmap_pte = kmap_get_pte(); + unsigned long vaddr; + int idx; + + /* + * Disable migration so resulting virtual address is stable + * accross preemption. + */ + migrate_disable(); + preempt_disable(); + idx = arch_kmap_local_map_idx(kmap_local_idx_push(), pfn); + vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); + BUG_ON(!pte_none(*(kmap_pte - idx))); + pteval = pfn_pte(pfn, prot); + set_pte_at(&init_mm, vaddr, kmap_pte - idx, pteval); + arch_kmap_local_post_map(vaddr, pteval); + current->kmap_ctrl.pteval[kmap_local_idx()] = pteval; + preempt_enable(); + + return (void *)vaddr; +} +EXPORT_SYMBOL_GPL(__kmap_local_pfn_prot); + +void *__kmap_local_page_prot(struct page *page, pgprot_t prot) +{ + void *kmap; + + if (!PageHighMem(page)) + return page_address(page); + + /* Try kmap_high_get() if architecture has it enabled */ + kmap = arch_kmap_local_high_get(page); + if (kmap) + return kmap; + + return __kmap_local_pfn_prot(page_to_pfn(page), prot); +} +EXPORT_SYMBOL(__kmap_local_page_prot); + +void kunmap_local_indexed(void *vaddr) +{ + unsigned long addr = (unsigned long) vaddr & PAGE_MASK; + pte_t *kmap_pte = kmap_get_pte(); + int idx; + + if (addr < __fix_to_virt(FIX_KMAP_END) || + addr > __fix_to_virt(FIX_KMAP_BEGIN)) { + /* + * Handle mappings which were obtained by kmap_high_get() + * first as the virtual address of such mappings is below + * PAGE_OFFSET. Warn for all other addresses which are in + * the user space part of the virtual address space. + */ + if (!kmap_high_unmap_local(addr)) + WARN_ON_ONCE(addr < PAGE_OFFSET); + return; + } + + preempt_disable(); + idx = arch_kmap_local_unmap_idx(kmap_local_idx(), addr); + WARN_ON_ONCE(addr != __fix_to_virt(FIX_KMAP_BEGIN + idx)); + + arch_kmap_local_pre_unmap(addr); + pte_clear(&init_mm, addr, kmap_pte - idx); + arch_kmap_local_post_unmap(addr); + current->kmap_ctrl.pteval[kmap_local_idx()] = __pte(0); + kmap_local_idx_pop(); + preempt_enable(); + migrate_enable(); +} +EXPORT_SYMBOL(kunmap_local_indexed); + +/* + * Invoked before switch_to(). This is safe even when during or after + * clearing the maps an interrupt which needs a kmap_local happens because + * the task::kmap_ctrl.idx is not modified by the unmapping code so a + * nested kmap_local will use the next unused index and restore the index + * on unmap. The already cleared kmaps of the outgoing task are irrelevant + * because the interrupt context does not know about them. The same applies + * when scheduling back in for an interrupt which happens before the + * restore is complete. + */ +void __kmap_local_sched_out(void) +{ + struct task_struct *tsk = current; + pte_t *kmap_pte = kmap_get_pte(); + int i; + + /* Clear kmaps */ + for (i = 0; i < tsk->kmap_ctrl.idx; i++) { + pte_t pteval = tsk->kmap_ctrl.pteval[i]; + unsigned long addr; + int idx; + + /* With debug all even slots are unmapped and act as guard */ + if (IS_ENABLED(CONFIG_DEBUG_HIGHMEM) && !(i & 0x01)) { + WARN_ON_ONCE(!pte_none(pteval)); + continue; + } + if (WARN_ON_ONCE(pte_none(pteval))) + continue; + + /* + * This is a horrible hack for XTENSA to calculate the + * coloured PTE index. Uses the PFN encoded into the pteval + * and the map index calculation because the actual mapped + * virtual address is not stored in task::kmap_ctrl. + * For any sane architecture this is optimized out. + */ + idx = arch_kmap_local_map_idx(i, pte_pfn(pteval)); + + addr = __fix_to_virt(FIX_KMAP_BEGIN + idx); + arch_kmap_local_pre_unmap(addr); + pte_clear(&init_mm, addr, kmap_pte - idx); + arch_kmap_local_post_unmap(addr); + } +} + +void __kmap_local_sched_in(void) +{ + struct task_struct *tsk = current; + pte_t *kmap_pte = kmap_get_pte(); + int i; + + /* Restore kmaps */ + for (i = 0; i < tsk->kmap_ctrl.idx; i++) { + pte_t pteval = tsk->kmap_ctrl.pteval[i]; + unsigned long addr; + int idx; + + /* With debug all even slots are unmapped and act as guard */ + if (IS_ENABLED(CONFIG_DEBUG_HIGHMEM) && !(i & 0x01)) { + WARN_ON_ONCE(!pte_none(pteval)); + continue; + } + if (WARN_ON_ONCE(pte_none(pteval))) + continue; + + /* See comment in __kmap_local_sched_out() */ + idx = arch_kmap_local_map_idx(i, pte_pfn(pteval)); + addr = __fix_to_virt(FIX_KMAP_BEGIN + idx); + set_pte_at(&init_mm, addr, kmap_pte - idx, pteval); + arch_kmap_local_post_map(addr, pteval); + } +} + +void kmap_local_fork(struct task_struct *tsk) +{ + if (WARN_ON_ONCE(tsk->kmap_ctrl.idx)) + memset(&tsk->kmap_ctrl, 0, sizeof(tsk->kmap_ctrl)); +} + +#endif #if defined(HASHED_PAGE_VIRTUAL) @ mm/memcontrol.c:66 @ #include <net/sock.h> #include <net/ip.h> #include "slab.h" +#include <linux/local_lock.h> #include <linux/uaccess.h> @ mm/memcontrol.c:97 @ bool cgroup_memory_noswap __read_mostly; static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); #endif +struct event_lock { + local_lock_t l; +}; +static DEFINE_PER_CPU(struct event_lock, event_lock) = { + .l = INIT_LOCAL_LOCK(l), +}; + /* Whether legacy memory+swap accounting is active */ static bool do_memsw_account(void) { @ mm/memcontrol.c:827 @ void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); memcg = pn->memcg; + preempt_disable_rt(); /* Update memcg */ __mod_memcg_state(memcg, idx, val); @ mm/memcontrol.c:847 @ void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, x = 0; } __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); + preempt_enable_rt(); } /** @ mm/memcontrol.c:2213 @ void unlock_page_memcg(struct page *page) EXPORT_SYMBOL(unlock_page_memcg); struct memcg_stock_pcp { + local_lock_t lock; struct mem_cgroup *cached; /* this never be root cgroup */ unsigned int nr_pages; @ mm/memcontrol.c:2265 @ static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) if (nr_pages > MEMCG_CHARGE_BATCH) return ret; - local_irq_save(flags); + local_lock_irqsave(&memcg_stock.lock, flags); stock = this_cpu_ptr(&memcg_stock); if (memcg == stock->cached && stock->nr_pages >= nr_pages) { @ mm/memcontrol.c:2273 @ static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) ret = true; } - local_irq_restore(flags); + local_unlock_irqrestore(&memcg_stock.lock, flags); return ret; } @ mm/memcontrol.c:2308 @ static void drain_local_stock(struct work_struct *dummy) * The only protection from memory hotplug vs. drain_stock races is * that we always operate on local CPU stock here with IRQ disabled */ - local_irq_save(flags); + local_lock_irqsave(&memcg_stock.lock, flags); stock = this_cpu_ptr(&memcg_stock); drain_obj_stock(stock); drain_stock(stock); clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); - local_irq_restore(flags); + local_unlock_irqrestore(&memcg_stock.lock, flags); } /* @ mm/memcontrol.c:2327 @ static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) struct memcg_stock_pcp *stock; unsigned long flags; - local_irq_save(flags); + local_lock_irqsave(&memcg_stock.lock, flags); stock = this_cpu_ptr(&memcg_stock); if (stock->cached != memcg) { /* reset if necessary */ @ mm/memcontrol.c:2340 @ static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) if (stock->nr_pages > MEMCG_CHARGE_BATCH) drain_stock(stock); - local_irq_restore(flags); + local_unlock_irqrestore(&memcg_stock.lock, flags); } /* @ mm/memcontrol.c:2360 @ static void drain_all_stock(struct mem_cgroup *root_memcg) * as well as workers from this path always operate on the local * per-cpu data. CPU up doesn't touch memcg_stock at all. */ - curcpu = get_cpu(); + curcpu = get_cpu_light(); for_each_online_cpu(cpu) { struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); struct mem_cgroup *memcg; @ mm/memcontrol.c:2383 @ static void drain_all_stock(struct mem_cgroup *root_memcg) schedule_work_on(cpu, &stock->work); } } - put_cpu(); + put_cpu_light(); mutex_unlock(&percpu_charge_mutex); } @ mm/memcontrol.c:3148 @ static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) unsigned long flags; bool ret = false; - local_irq_save(flags); + local_lock_irqsave(&memcg_stock.lock, flags); stock = this_cpu_ptr(&memcg_stock); if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { @ mm/memcontrol.c:3156 @ static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) ret = true; } - local_irq_restore(flags); + local_unlock_irqrestore(&memcg_stock.lock, flags); return ret; } @ mm/memcontrol.c:3223 @ static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) struct memcg_stock_pcp *stock; unsigned long flags; - local_irq_save(flags); + local_lock_irqsave(&memcg_stock.lock, flags); stock = this_cpu_ptr(&memcg_stock); if (stock->cached_objcg != objcg) { /* reset if necessary */ @ mm/memcontrol.c:3237 @ static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) if (stock->nr_bytes > PAGE_SIZE) drain_obj_stock(stock); - local_irq_restore(flags); + local_unlock_irqrestore(&memcg_stock.lock, flags); } int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) @ mm/memcontrol.c:5742 @ static int mem_cgroup_move_account(struct page *page, ret = 0; - local_irq_disable(); + local_lock_irq(&event_lock.l); mem_cgroup_charge_statistics(to, page, nr_pages); memcg_check_events(to, page); mem_cgroup_charge_statistics(from, page, -nr_pages); memcg_check_events(from, page); - local_irq_enable(); + local_unlock_irq(&event_lock.l); out_unlock: unlock_page(page); out: @ mm/memcontrol.c:6817 @ int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) css_get(&memcg->css); commit_charge(page, memcg); - local_irq_disable(); + local_lock_irq(&event_lock.l); mem_cgroup_charge_statistics(memcg, page, nr_pages); memcg_check_events(memcg, page); - local_irq_enable(); + local_unlock_irq(&event_lock.l); /* * Cgroup1's unified memory+swap counter has been charged with the @ mm/memcontrol.c:6876 @ static void uncharge_batch(const struct uncharge_gather *ug) memcg_oom_recover(ug->memcg); } - local_irq_save(flags); + local_lock_irqsave(&event_lock.l, flags); __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages); memcg_check_events(ug->memcg, ug->dummy_page); - local_irq_restore(flags); + local_unlock_irqrestore(&event_lock.l, flags); /* drop reference from uncharge_page */ css_put(&ug->memcg->css); @ mm/memcontrol.c:7034 @ void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) css_get(&memcg->css); commit_charge(newpage, memcg); - local_irq_save(flags); + local_lock_irqsave(&event_lock.l, flags); mem_cgroup_charge_statistics(memcg, newpage, nr_pages); memcg_check_events(memcg, newpage); - local_irq_restore(flags); + local_unlock_irqrestore(&event_lock.l, flags); } DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); @ mm/memcontrol.c:7157 @ static int __init mem_cgroup_init(void) cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, memcg_hotplug_cpu_dead); - for_each_possible_cpu(cpu) - INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, - drain_local_stock); + for_each_possible_cpu(cpu) { + struct memcg_stock_pcp *stock; + + stock = per_cpu_ptr(&memcg_stock, cpu); + INIT_WORK(&stock->work, drain_local_stock); + local_lock_init(&stock->lock); + } for_each_node(node) { struct mem_cgroup_tree_per_node *rtpn; @ mm/memcontrol.c:7212 @ void mem_cgroup_swapout(struct page *page, swp_entry_t entry) struct mem_cgroup *memcg, *swap_memcg; unsigned int nr_entries; unsigned short oldid; + unsigned long flags; VM_BUG_ON_PAGE(PageLRU(page), page); VM_BUG_ON_PAGE(page_count(page), page); @ mm/memcontrol.c:7258 @ void mem_cgroup_swapout(struct page *page, swp_entry_t entry) * important here to have the interrupts disabled because it is the * only synchronisation we have for updating the per-CPU variables. */ + local_lock_irqsave(&event_lock.l, flags); +#ifndef CONFIG_PREEMPT_RT VM_BUG_ON(!irqs_disabled()); +#endif mem_cgroup_charge_statistics(memcg, page, -nr_entries); memcg_check_events(memcg, page); + local_unlock_irqrestore(&event_lock.l, flags); css_put(&memcg->css); } @ mm/page_alloc.c:64 @ #include <linux/hugetlb.h> #include <linux/sched/rt.h> #include <linux/sched/mm.h> +#include <linux/local_lock.h> #include <linux/page_owner.h> #include <linux/kthread.h> #include <linux/memcontrol.h> @ mm/page_alloc.c:390 @ EXPORT_SYMBOL(nr_node_ids); EXPORT_SYMBOL(nr_online_nodes); #endif +struct pa_lock { + local_lock_t l; +}; +static DEFINE_PER_CPU(struct pa_lock, pa_lock) = { + .l = INIT_LOCAL_LOCK(l), +}; + int page_group_by_mobility_disabled __read_mostly; #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT @ mm/page_alloc.c:1342 @ static inline void prefetch_buddy(struct page *page) } /* - * Frees a number of pages from the PCP lists + * Frees a number of pages which have been collected from the pcp lists. * Assumes all pages on list are in same zone, and of same order. * count is the number of pages to free. * @ mm/page_alloc.c:1352 @ static inline void prefetch_buddy(struct page *page) * And clear the zone's pages_scanned counter, to hold off the "all pages are * pinned" detection logic. */ -static void free_pcppages_bulk(struct zone *zone, int count, - struct per_cpu_pages *pcp) +static void free_pcppages_bulk(struct zone *zone, struct list_head *head, + bool zone_retry) +{ + bool isolated_pageblocks; + struct page *page, *tmp; + unsigned long flags; + + spin_lock_irqsave(&zone->lock, flags); + isolated_pageblocks = has_isolate_pageblock(zone); + + /* + * Use safe version since after __free_one_page(), + * page->lru.next will not point to original list. + */ + list_for_each_entry_safe(page, tmp, head, lru) { + int mt = get_pcppage_migratetype(page); + + if (page_zone(page) != zone) { + /* + * free_unref_page_list() sorts pages by zone. If we end + * up with pages from a different NUMA nodes belonging + * to the same ZONE index then we need to redo with the + * correct ZONE pointer. Skip the page for now, redo it + * on the next iteration. + */ + WARN_ON_ONCE(zone_retry == false); + if (zone_retry) + continue; + } + + /* MIGRATE_ISOLATE page should not go to pcplists */ + VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); + /* Pageblock could have been isolated meanwhile */ + if (unlikely(isolated_pageblocks)) + mt = get_pageblock_migratetype(page); + + list_del(&page->lru); + __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE); + trace_mm_page_pcpu_drain(page, 0, mt); + } + spin_unlock_irqrestore(&zone->lock, flags); +} + +static void isolate_pcp_pages(int count, struct per_cpu_pages *pcp, + struct list_head *dst) { int migratetype = 0; int batch_free = 0; int prefetch_nr = 0; - bool isolated_pageblocks; - struct page *page, *tmp; - LIST_HEAD(head); + struct page *page; /* * Ensure proper count is passed which otherwise would stuck in the @ mm/page_alloc.c:1438 @ static void free_pcppages_bulk(struct zone *zone, int count, if (bulkfree_pcp_prepare(page)) continue; - list_add_tail(&page->lru, &head); + list_add_tail(&page->lru, dst); /* * We are going to put the page back to the global @ mm/page_alloc.c:1453 @ static void free_pcppages_bulk(struct zone *zone, int count, prefetch_buddy(page); } while (--count && --batch_free && !list_empty(list)); } - - spin_lock(&zone->lock); - isolated_pageblocks = has_isolate_pageblock(zone); - - /* - * Use safe version since after __free_one_page(), - * page->lru.next will not point to original list. - */ - list_for_each_entry_safe(page, tmp, &head, lru) { - int mt = get_pcppage_migratetype(page); - /* MIGRATE_ISOLATE page should not go to pcplists */ - VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); - /* Pageblock could have been isolated meanwhile */ - if (unlikely(isolated_pageblocks)) - mt = get_pageblock_migratetype(page); - - __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE); - trace_mm_page_pcpu_drain(page, 0, mt); - } - spin_unlock(&zone->lock); } static void free_one_page(struct zone *zone, @ mm/page_alloc.c:1554 @ static void __free_pages_ok(struct page *page, unsigned int order, return; migratetype = get_pfnblock_migratetype(page, pfn); - local_irq_save(flags); + local_lock_irqsave(&pa_lock.l, flags); __count_vm_events(PGFREE, 1 << order); free_one_page(page_zone(page), page, pfn, order, migratetype, fpi_flags); - local_irq_restore(flags); + local_unlock_irqrestore(&pa_lock.l, flags); } void __free_pages_core(struct page *page, unsigned int order) @ mm/page_alloc.c:2970 @ void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) { unsigned long flags; int to_drain, batch; + LIST_HEAD(dst); - local_irq_save(flags); + local_lock_irqsave(&pa_lock.l, flags); batch = READ_ONCE(pcp->batch); to_drain = min(pcp->count, batch); if (to_drain > 0) - free_pcppages_bulk(zone, to_drain, pcp); - local_irq_restore(flags); + isolate_pcp_pages(to_drain, pcp, &dst); + + local_unlock_irqrestore(&pa_lock.l, flags); + + if (to_drain > 0) + free_pcppages_bulk(zone, &dst, false); } #endif @ mm/page_alloc.c:2997 @ static void drain_pages_zone(unsigned int cpu, struct zone *zone) unsigned long flags; struct per_cpu_pageset *pset; struct per_cpu_pages *pcp; + LIST_HEAD(dst); + int count; - local_irq_save(flags); + local_lock_irqsave(&pa_lock.l, flags); pset = per_cpu_ptr(zone->pageset, cpu); pcp = &pset->pcp; - if (pcp->count) - free_pcppages_bulk(zone, pcp->count, pcp); - local_irq_restore(flags); + count = pcp->count; + if (count) + isolate_pcp_pages(count, pcp, &dst); + + local_unlock_irqrestore(&pa_lock.l, flags); + + if (count) + free_pcppages_bulk(zone, &dst, false); } /* @ mm/page_alloc.c:3059 @ static void drain_local_pages_wq(struct work_struct *work) * cpu which is allright but we also have to make sure to not move to * a different one. */ - preempt_disable(); + migrate_disable(); drain_local_pages(drain->zone); - preempt_enable(); + migrate_enable(); } /* @ mm/page_alloc.c:3210 @ static bool free_unref_page_prepare(struct page *page, unsigned long pfn) return true; } -static void free_unref_page_commit(struct page *page, unsigned long pfn) +static void free_unref_page_commit(struct page *page, unsigned long pfn, + struct list_head *dst) { struct zone *zone = page_zone(page); struct per_cpu_pages *pcp; @ mm/page_alloc.c:3241 @ static void free_unref_page_commit(struct page *page, unsigned long pfn) pcp->count++; if (pcp->count >= pcp->high) { unsigned long batch = READ_ONCE(pcp->batch); - free_pcppages_bulk(zone, batch, pcp); + + isolate_pcp_pages(batch, pcp, dst); } } @ mm/page_alloc.c:3253 @ void free_unref_page(struct page *page) { unsigned long flags; unsigned long pfn = page_to_pfn(page); + struct zone *zone = page_zone(page); + LIST_HEAD(dst); if (!free_unref_page_prepare(page, pfn)) return; - local_irq_save(flags); - free_unref_page_commit(page, pfn); - local_irq_restore(flags); + local_lock_irqsave(&pa_lock.l, flags); + free_unref_page_commit(page, pfn, &dst); + local_unlock_irqrestore(&pa_lock.l, flags); + if (!list_empty(&dst)) + free_pcppages_bulk(zone, &dst, false); } /* @ mm/page_alloc.c:3274 @ void free_unref_page_list(struct list_head *list) struct page *page, *next; unsigned long flags, pfn; int batch_count = 0; + struct list_head dsts[__MAX_NR_ZONES]; + int i; + + for (i = 0; i < __MAX_NR_ZONES; i++) + INIT_LIST_HEAD(&dsts[i]); /* Prepare pages for freeing */ list_for_each_entry_safe(page, next, list, lru) { @ mm/page_alloc.c:3288 @ void free_unref_page_list(struct list_head *list) set_page_private(page, pfn); } - local_irq_save(flags); + local_lock_irqsave(&pa_lock.l, flags); list_for_each_entry_safe(page, next, list, lru) { unsigned long pfn = page_private(page); + enum zone_type type; set_page_private(page, 0); trace_mm_page_free_batched(page); - free_unref_page_commit(page, pfn); + type = page_zonenum(page); + free_unref_page_commit(page, pfn, &dsts[type]); /* * Guard against excessive IRQ disabled times when we get * a large list of pages to free. */ if (++batch_count == SWAP_CLUSTER_MAX) { - local_irq_restore(flags); + local_unlock_irqrestore(&pa_lock.l, flags); batch_count = 0; - local_irq_save(flags); + local_lock_irqsave(&pa_lock.l, flags); } } - local_irq_restore(flags); + local_unlock_irqrestore(&pa_lock.l, flags); + + for (i = 0; i < __MAX_NR_ZONES; ) { + struct page *page; + struct zone *zone; + + if (list_empty(&dsts[i])) { + i++; + continue; + } + + page = list_first_entry(&dsts[i], struct page, lru); + zone = page_zone(page); + + free_pcppages_bulk(zone, &dsts[i], true); + } } /* @ mm/page_alloc.c:3479 @ static struct page *rmqueue_pcplist(struct zone *preferred_zone, struct page *page; unsigned long flags; - local_irq_save(flags); + local_lock_irqsave(&pa_lock.l, flags); pcp = &this_cpu_ptr(zone->pageset)->pcp; list = &pcp->lists[migratetype]; page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); @ mm/page_alloc.c:3487 @ static struct page *rmqueue_pcplist(struct zone *preferred_zone, __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); zone_statistics(preferred_zone, zone); } - local_irq_restore(flags); + local_unlock_irqrestore(&pa_lock.l, flags); return page; } @ mm/page_alloc.c:3521 @ struct page *rmqueue(struct zone *preferred_zone, * allocate greater than order-1 page units with __GFP_NOFAIL. */ WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); - spin_lock_irqsave(&zone->lock, flags); + local_lock_irqsave(&pa_lock.l, flags); + spin_lock(&zone->lock); do { page = NULL; @ mm/page_alloc.c:3548 @ struct page *rmqueue(struct zone *preferred_zone, __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); zone_statistics(preferred_zone, zone); - local_irq_restore(flags); + local_unlock_irqrestore(&pa_lock.l, flags); out: /* Separate test+clear to avoid unnecessary atomics */ @ mm/page_alloc.c:3561 @ struct page *rmqueue(struct zone *preferred_zone, return page; failed: - local_irq_restore(flags); + local_unlock_irqrestore(&pa_lock.l, flags); return NULL; } @ mm/page_alloc.c:8827 @ void zone_pcp_reset(struct zone *zone) struct per_cpu_pageset *pset; /* avoid races with drain_pages() */ - local_irq_save(flags); + local_lock_irqsave(&pa_lock.l, flags); if (zone->pageset != &boot_pageset) { for_each_online_cpu(cpu) { pset = per_cpu_ptr(zone->pageset, cpu); @ mm/page_alloc.c:8836 @ void zone_pcp_reset(struct zone *zone) free_percpu(zone->pageset); zone->pageset = &boot_pageset; } - local_irq_restore(flags); + local_unlock_irqrestore(&pa_lock.l, flags); } #ifdef CONFIG_MEMORY_HOTREMOVE @ mm/shmem.c:281 @ static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) ino_t ino; if (!(sb->s_flags & SB_KERNMOUNT)) { - spin_lock(&sbinfo->stat_lock); + raw_spin_lock(&sbinfo->stat_lock); if (sbinfo->max_inodes) { if (!sbinfo->free_inodes) { - spin_unlock(&sbinfo->stat_lock); + raw_spin_unlock(&sbinfo->stat_lock); return -ENOSPC; } sbinfo->free_inodes--; @ mm/shmem.c:307 @ static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) } *inop = ino; } - spin_unlock(&sbinfo->stat_lock); + raw_spin_unlock(&sbinfo->stat_lock); } else if (inop) { /* * __shmem_file_setup, one of our callers, is lock-free: it @ mm/shmem.c:322 @ static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) * to worry about things like glibc compatibility. */ ino_t *next_ino; + next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); ino = *next_ino; if (unlikely(ino % SHMEM_INO_BATCH == 0)) { - spin_lock(&sbinfo->stat_lock); + raw_spin_lock(&sbinfo->stat_lock); ino = sbinfo->next_ino; sbinfo->next_ino += SHMEM_INO_BATCH; - spin_unlock(&sbinfo->stat_lock); + raw_spin_unlock(&sbinfo->stat_lock); if (unlikely(is_zero_ino(ino))) ino++; } @ mm/shmem.c:345 @ static void shmem_free_inode(struct super_block *sb) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); if (sbinfo->max_inodes) { - spin_lock(&sbinfo->stat_lock); + raw_spin_lock(&sbinfo->stat_lock); sbinfo->free_inodes++; - spin_unlock(&sbinfo->stat_lock); + raw_spin_unlock(&sbinfo->stat_lock); } } @ mm/shmem.c:1483 @ static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) { struct mempolicy *mpol = NULL; if (sbinfo->mpol) { - spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ + raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ mpol = sbinfo->mpol; mpol_get(mpol); - spin_unlock(&sbinfo->stat_lock); + raw_spin_unlock(&sbinfo->stat_lock); } return mpol; } @ mm/shmem.c:3592 @ static int shmem_reconfigure(struct fs_context *fc) struct shmem_options *ctx = fc->fs_private; struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); unsigned long inodes; + struct mempolicy *mpol = NULL; const char *err; - spin_lock(&sbinfo->stat_lock); + raw_spin_lock(&sbinfo->stat_lock); inodes = sbinfo->max_inodes - sbinfo->free_inodes; if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { if (!sbinfo->max_blocks) { @ mm/shmem.c:3640 @ static int shmem_reconfigure(struct fs_context *fc) * Preserve previous mempolicy unless mpol remount option was specified. */ if (ctx->mpol) { - mpol_put(sbinfo->mpol); + mpol = sbinfo->mpol; sbinfo->mpol = ctx->mpol; /* transfers initial ref */ ctx->mpol = NULL; } - spin_unlock(&sbinfo->stat_lock); + raw_spin_unlock(&sbinfo->stat_lock); + mpol_put(mpol); return 0; out: - spin_unlock(&sbinfo->stat_lock); + raw_spin_unlock(&sbinfo->stat_lock); return invalfc(fc, "%s", err); } @ mm/shmem.c:3765 @ static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) sbinfo->mpol = ctx->mpol; ctx->mpol = NULL; - spin_lock_init(&sbinfo->stat_lock); + raw_spin_lock_init(&sbinfo->stat_lock); if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) goto failed; spin_lock_init(&sbinfo->shrinklist_lock); @ mm/slab.c:236 @ static void kmem_cache_node_init(struct kmem_cache_node *parent) parent->shared = NULL; parent->alien = NULL; parent->colour_next = 0; - spin_lock_init(&parent->list_lock); + raw_spin_lock_init(&parent->list_lock); parent->free_objects = 0; parent->free_touched = 0; } @ mm/slab.c:561 @ static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, page_node = page_to_nid(page); n = get_node(cachep, page_node); - spin_lock(&n->list_lock); + raw_spin_lock(&n->list_lock); free_block(cachep, &objp, 1, page_node, &list); - spin_unlock(&n->list_lock); + raw_spin_unlock(&n->list_lock); slabs_destroy(cachep, &list); } @ mm/slab.c:701 @ static void __drain_alien_cache(struct kmem_cache *cachep, struct kmem_cache_node *n = get_node(cachep, node); if (ac->avail) { - spin_lock(&n->list_lock); + raw_spin_lock(&n->list_lock); /* * Stuff objects into the remote nodes shared array first. * That way we could avoid the overhead of putting the objects @ mm/slab.c:712 @ static void __drain_alien_cache(struct kmem_cache *cachep, free_block(cachep, ac->entry, ac->avail, node, list); ac->avail = 0; - spin_unlock(&n->list_lock); + raw_spin_unlock(&n->list_lock); } } @ mm/slab.c:785 @ static int __cache_free_alien(struct kmem_cache *cachep, void *objp, slabs_destroy(cachep, &list); } else { n = get_node(cachep, page_node); - spin_lock(&n->list_lock); + raw_spin_lock(&n->list_lock); free_block(cachep, &objp, 1, page_node, &list); - spin_unlock(&n->list_lock); + raw_spin_unlock(&n->list_lock); slabs_destroy(cachep, &list); } return 1; @ mm/slab.c:828 @ static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) */ n = get_node(cachep, node); if (n) { - spin_lock_irq(&n->list_lock); + raw_spin_lock_irq(&n->list_lock); n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; - spin_unlock_irq(&n->list_lock); + raw_spin_unlock_irq(&n->list_lock); return 0; } @ mm/slab.c:910 @ static int setup_kmem_cache_node(struct kmem_cache *cachep, goto fail; n = get_node(cachep, node); - spin_lock_irq(&n->list_lock); + raw_spin_lock_irq(&n->list_lock); if (n->shared && force_change) { free_block(cachep, n->shared->entry, n->shared->avail, node, &list); @ mm/slab.c:928 @ static int setup_kmem_cache_node(struct kmem_cache *cachep, new_alien = NULL; } - spin_unlock_irq(&n->list_lock); + raw_spin_unlock_irq(&n->list_lock); slabs_destroy(cachep, &list); /* @ mm/slab.c:967 @ static void cpuup_canceled(long cpu) if (!n) continue; - spin_lock_irq(&n->list_lock); + raw_spin_lock_irq(&n->list_lock); /* Free limit for this kmem_cache_node */ n->free_limit -= cachep->batchcount; @ mm/slab.c:978 @ static void cpuup_canceled(long cpu) nc->avail = 0; if (!cpumask_empty(mask)) { - spin_unlock_irq(&n->list_lock); + raw_spin_unlock_irq(&n->list_lock); goto free_slab; } @ mm/slab.c:992 @ static void cpuup_canceled(long cpu) alien = n->alien; n->alien = NULL; - spin_unlock_irq(&n->list_lock); + raw_spin_unlock_irq(&n->list_lock); kfree(shared); if (alien) { @ mm/slab.c:1176 @ static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node * /* * Do not assume that spinlocks can be initialized via memcpy: */ - spin_lock_init(&ptr->list_lock); + raw_spin_lock_init(&ptr->list_lock); MAKE_ALL_LISTS(cachep, ptr, nodeid); cachep->node[nodeid] = ptr; @ mm/slab.c:1347 @ slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) for_each_kmem_cache_node(cachep, node, n) { unsigned long total_slabs, free_slabs, free_objs; - spin_lock_irqsave(&n->list_lock, flags); + raw_spin_lock_irqsave(&n->list_lock, flags); total_slabs = n->total_slabs; free_slabs = n->free_slabs; free_objs = n->free_objects; - spin_unlock_irqrestore(&n->list_lock, flags); + raw_spin_unlock_irqrestore(&n->list_lock, flags); pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", node, total_slabs - free_slabs, total_slabs, @ mm/slab.c:2108 @ static void check_spinlock_acquired(struct kmem_cache *cachep) { #ifdef CONFIG_SMP check_irq_off(); - assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); + assert_raw_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); #endif } @ mm/slab.c:2116 @ static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) { #ifdef CONFIG_SMP check_irq_off(); - assert_spin_locked(&get_node(cachep, node)->list_lock); + assert_raw_spin_locked(&get_node(cachep, node)->list_lock); #endif } @ mm/slab.c:2156 @ static void do_drain(void *arg) check_irq_off(); ac = cpu_cache_get(cachep); n = get_node(cachep, node); - spin_lock(&n->list_lock); + raw_spin_lock(&n->list_lock); free_block(cachep, ac->entry, ac->avail, node, &list); - spin_unlock(&n->list_lock); + raw_spin_unlock(&n->list_lock); ac->avail = 0; slabs_destroy(cachep, &list); } @ mm/slab.c:2176 @ static void drain_cpu_caches(struct kmem_cache *cachep) drain_alien_cache(cachep, n->alien); for_each_kmem_cache_node(cachep, node, n) { - spin_lock_irq(&n->list_lock); + raw_spin_lock_irq(&n->list_lock); drain_array_locked(cachep, n->shared, node, true, &list); - spin_unlock_irq(&n->list_lock); + raw_spin_unlock_irq(&n->list_lock); slabs_destroy(cachep, &list); } @ mm/slab.c:2200 @ static int drain_freelist(struct kmem_cache *cache, nr_freed = 0; while (nr_freed < tofree && !list_empty(&n->slabs_free)) { - spin_lock_irq(&n->list_lock); + raw_spin_lock_irq(&n->list_lock); p = n->slabs_free.prev; if (p == &n->slabs_free) { - spin_unlock_irq(&n->list_lock); + raw_spin_unlock_irq(&n->list_lock); goto out; } @ mm/slab.c:2216 @ static int drain_freelist(struct kmem_cache *cache, * to the cache. */ n->free_objects -= cache->num; - spin_unlock_irq(&n->list_lock); + raw_spin_unlock_irq(&n->list_lock); slab_destroy(cache, page); nr_freed++; } @ mm/slab.c:2652 @ static void cache_grow_end(struct kmem_cache *cachep, struct page *page) INIT_LIST_HEAD(&page->slab_list); n = get_node(cachep, page_to_nid(page)); - spin_lock(&n->list_lock); + raw_spin_lock(&n->list_lock); n->total_slabs++; if (!page->active) { list_add_tail(&page->slab_list, &n->slabs_free); @ mm/slab.c:2662 @ static void cache_grow_end(struct kmem_cache *cachep, struct page *page) STATS_INC_GROWN(cachep); n->free_objects += cachep->num - page->active; - spin_unlock(&n->list_lock); + raw_spin_unlock(&n->list_lock); fixup_objfreelist_debug(cachep, &list); } @ mm/slab.c:2828 @ static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) { struct page *page; - assert_spin_locked(&n->list_lock); + assert_raw_spin_locked(&n->list_lock); page = list_first_entry_or_null(&n->slabs_partial, struct page, slab_list); if (!page) { @ mm/slab.c:2855 @ static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, if (!gfp_pfmemalloc_allowed(flags)) return NULL; - spin_lock(&n->list_lock); + raw_spin_lock(&n->list_lock); page = get_first_slab(n, true); if (!page) { - spin_unlock(&n->list_lock); + raw_spin_unlock(&n->list_lock); return NULL; } @ mm/slab.c:2867 @ static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, fixup_slab_list(cachep, n, page, &list); - spin_unlock(&n->list_lock); + raw_spin_unlock(&n->list_lock); fixup_objfreelist_debug(cachep, &list); return obj; @ mm/slab.c:2926 @ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) if (!n->free_objects && (!shared || !shared->avail)) goto direct_grow; - spin_lock(&n->list_lock); + raw_spin_lock(&n->list_lock); shared = READ_ONCE(n->shared); /* See if we can refill from the shared array */ @ mm/slab.c:2950 @ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) must_grow: n->free_objects -= ac->avail; alloc_done: - spin_unlock(&n->list_lock); + raw_spin_unlock(&n->list_lock); fixup_objfreelist_debug(cachep, &list); direct_grow: @ mm/slab.c:3175 @ static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, BUG_ON(!n); check_irq_off(); - spin_lock(&n->list_lock); + raw_spin_lock(&n->list_lock); page = get_first_slab(n, false); if (!page) goto must_grow; @ mm/slab.c:3193 @ static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, fixup_slab_list(cachep, n, page, &list); - spin_unlock(&n->list_lock); + raw_spin_unlock(&n->list_lock); fixup_objfreelist_debug(cachep, &list); return obj; must_grow: - spin_unlock(&n->list_lock); + raw_spin_unlock(&n->list_lock); page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); if (page) { /* This slab isn't counted yet so don't update free_objects */ @ mm/slab.c:3376 @ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) check_irq_off(); n = get_node(cachep, node); - spin_lock(&n->list_lock); + raw_spin_lock(&n->list_lock); if (n->shared) { struct array_cache *shared_array = n->shared; int max = shared_array->limit - shared_array->avail; @ mm/slab.c:3405 @ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) STATS_SET_FREEABLE(cachep, i); } #endif - spin_unlock(&n->list_lock); + raw_spin_unlock(&n->list_lock); ac->avail -= batchcount; memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); slabs_destroy(cachep, &list); @ mm/slab.c:3834 @ static int do_tune_cpucache(struct kmem_cache *cachep, int limit, node = cpu_to_mem(cpu); n = get_node(cachep, node); - spin_lock_irq(&n->list_lock); + raw_spin_lock_irq(&n->list_lock); free_block(cachep, ac->entry, ac->avail, node, &list); - spin_unlock_irq(&n->list_lock); + raw_spin_unlock_irq(&n->list_lock); slabs_destroy(cachep, &list); } free_percpu(prev); @ mm/slab.c:3931 @ static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, return; } - spin_lock_irq(&n->list_lock); + raw_spin_lock_irq(&n->list_lock); drain_array_locked(cachep, ac, node, false, &list); - spin_unlock_irq(&n->list_lock); + raw_spin_unlock_irq(&n->list_lock); slabs_destroy(cachep, &list); } @ mm/slab.c:4017 @ void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) for_each_kmem_cache_node(cachep, node, n) { check_irq_on(); - spin_lock_irq(&n->list_lock); + raw_spin_lock_irq(&n->list_lock); total_slabs += n->total_slabs; free_slabs += n->free_slabs; @ mm/slab.c:4026 @ void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) if (n->shared) shared_avail += n->shared->avail; - spin_unlock_irq(&n->list_lock); + raw_spin_unlock_irq(&n->list_lock); } num_objs = total_slabs * cachep->num; active_slabs = total_slabs - free_slabs; @ mm/slab.h:546 @ static inline void slab_post_alloc_hook(struct kmem_cache *s, * The slab lists for all objects. */ struct kmem_cache_node { - spinlock_t list_lock; + raw_spinlock_t list_lock; #ifdef CONFIG_SLAB struct list_head slabs_partial; /* partial list first, better asm code */ @ mm/slub.c:438 @ static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, #ifdef CONFIG_SLUB_DEBUG static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; -static DEFINE_SPINLOCK(object_map_lock); +static DEFINE_RAW_SPINLOCK(object_map_lock); /* * Determine a map of object in use on a page. @ mm/slub.c:454 @ static unsigned long *get_map(struct kmem_cache *s, struct page *page) VM_BUG_ON(!irqs_disabled()); - spin_lock(&object_map_lock); + raw_spin_lock(&object_map_lock); bitmap_zero(object_map, page->objects); @ mm/slub.c:467 @ static unsigned long *get_map(struct kmem_cache *s, struct page *page) static void put_map(unsigned long *map) __releases(&object_map_lock) { VM_BUG_ON(map != object_map); - spin_unlock(&object_map_lock); + raw_spin_unlock(&object_map_lock); } static inline unsigned int size_from_object(struct kmem_cache *s) @ mm/slub.c:1217 @ static noinline int free_debug_processing( unsigned long flags; int ret = 0; - spin_lock_irqsave(&n->list_lock, flags); + raw_spin_lock_irqsave(&n->list_lock, flags); slab_lock(page); if (s->flags & SLAB_CONSISTENCY_CHECKS) { @ mm/slub.c:1252 @ static noinline int free_debug_processing( bulk_cnt, cnt); slab_unlock(page); - spin_unlock_irqrestore(&n->list_lock, flags); + raw_spin_unlock_irqrestore(&n->list_lock, flags); if (!ret) slab_fix(s, "Object at 0x%p not freed", object); return ret; @ mm/slub.c:1497 @ static bool freelist_corrupted(struct kmem_cache *s, struct page *page, } #endif /* CONFIG_SLUB_DEBUG */ +struct slub_free_list { + raw_spinlock_t lock; + struct list_head list; +}; +static DEFINE_PER_CPU(struct slub_free_list, slub_free_list); + /* * Hooks for other subsystems that check memory allocations. In a typical * production configuration these hooks all should produce no code at all. @ mm/slub.c:1753 @ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) void *start, *p, *next; int idx; bool shuffle; + bool enableirqs = false; flags &= gfp_allowed_mask; if (gfpflags_allow_blocking(flags)) + enableirqs = true; + +#ifdef CONFIG_PREEMPT_RT + if (system_state > SYSTEM_BOOTING && system_state < SYSTEM_SUSPEND) + enableirqs = true; +#endif + if (enableirqs) local_irq_enable(); flags |= s->allocflags; @ mm/slub.c:1823 @ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) page->frozen = 1; out: - if (gfpflags_allow_blocking(flags)) + if (enableirqs) local_irq_disable(); if (!page) return NULL; @ mm/slub.c:1866 @ static void __free_slab(struct kmem_cache *s, struct page *page) __free_pages(page, order); } +static void free_delayed(struct list_head *h) +{ + while (!list_empty(h)) { + struct page *page = list_first_entry(h, struct page, lru); + + list_del(&page->lru); + __free_slab(page->slab_cache, page); + } +} + static void rcu_free_slab(struct rcu_head *h) { struct page *page = container_of(h, struct page, rcu_head); @ mm/slub.c:1887 @ static void free_slab(struct kmem_cache *s, struct page *page) { if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { call_rcu(&page->rcu_head, rcu_free_slab); + } else if (irqs_disabled()) { + struct slub_free_list *f = this_cpu_ptr(&slub_free_list); + + raw_spin_lock(&f->lock); + list_add(&page->lru, &f->list); + raw_spin_unlock(&f->lock); } else __free_slab(s, page); } @ mm/slub.c:2000 @ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, if (!n || !n->nr_partial) return NULL; - spin_lock(&n->list_lock); + raw_spin_lock(&n->list_lock); list_for_each_entry_safe(page, page2, &n->partial, slab_list) { void *t; @ mm/slub.c:2025 @ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, break; } - spin_unlock(&n->list_lock); + raw_spin_unlock(&n->list_lock); return object; } @ mm/slub.c:2279 @ static void deactivate_slab(struct kmem_cache *s, struct page *page, * that acquire_slab() will see a slab page that * is frozen */ - spin_lock(&n->list_lock); + raw_spin_lock(&n->list_lock); } } else { m = M_FULL; @ mm/slub.c:2291 @ static void deactivate_slab(struct kmem_cache *s, struct page *page, * slabs from diagnostic functions will not see * any frozen slabs. */ - spin_lock(&n->list_lock); + raw_spin_lock(&n->list_lock); } #endif } @ mm/slub.c:2316 @ static void deactivate_slab(struct kmem_cache *s, struct page *page, goto redo; if (lock) - spin_unlock(&n->list_lock); + raw_spin_unlock(&n->list_lock); if (m == M_PARTIAL) stat(s, tail); @ mm/slub.c:2355 @ static void unfreeze_partials(struct kmem_cache *s, n2 = get_node(s, page_to_nid(page)); if (n != n2) { if (n) - spin_unlock(&n->list_lock); + raw_spin_unlock(&n->list_lock); n = n2; - spin_lock(&n->list_lock); + raw_spin_lock(&n->list_lock); } do { @ mm/slub.c:2387 @ static void unfreeze_partials(struct kmem_cache *s, } if (n) - spin_unlock(&n->list_lock); + raw_spin_unlock(&n->list_lock); while (discard_page) { page = discard_page; @ mm/slub.c:2424 @ static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) pobjects = oldpage->pobjects; pages = oldpage->pages; if (drain && pobjects > slub_cpu_partial(s)) { + struct slub_free_list *f; unsigned long flags; + LIST_HEAD(tofree); /* * partial array is full. Move the existing * set to the per node partial list. */ local_irq_save(flags); unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); + f = this_cpu_ptr(&slub_free_list); + raw_spin_lock(&f->lock); + list_splice_init(&f->list, &tofree); + raw_spin_unlock(&f->lock); local_irq_restore(flags); + free_delayed(&tofree); oldpage = NULL; pobjects = 0; pages = 0; @ mm/slub.c:2506 @ static bool has_cpu_slab(int cpu, void *info) static void flush_all(struct kmem_cache *s) { + LIST_HEAD(tofree); + int cpu; + on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); + for_each_online_cpu(cpu) { + struct slub_free_list *f; + + f = &per_cpu(slub_free_list, cpu); + raw_spin_lock_irq(&f->lock); + list_splice_init(&f->list, &tofree); + raw_spin_unlock_irq(&f->lock); + free_delayed(&tofree); + } } /* @ mm/slub.c:2573 @ static unsigned long count_partial(struct kmem_cache_node *n, unsigned long x = 0; struct page *page; - spin_lock_irqsave(&n->list_lock, flags); + raw_spin_lock_irqsave(&n->list_lock, flags); list_for_each_entry(page, &n->partial, slab_list) x += get_count(page); - spin_unlock_irqrestore(&n->list_lock, flags); + raw_spin_unlock_irqrestore(&n->list_lock, flags); return x; } #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ @ mm/slub.c:2715 @ static inline void *get_freelist(struct kmem_cache *s, struct page *page) * already disabled (which is the case for bulk allocation). */ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, - unsigned long addr, struct kmem_cache_cpu *c) + unsigned long addr, struct kmem_cache_cpu *c, + struct list_head *to_free) { + struct slub_free_list *f; void *freelist; struct page *page; @ mm/slub.c:2786 @ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, VM_BUG_ON(!c->page->frozen); c->freelist = get_freepointer(s, freelist); c->tid = next_tid(c->tid); + +out: + f = this_cpu_ptr(&slub_free_list); + raw_spin_lock(&f->lock); + list_splice_init(&f->list, to_free); + raw_spin_unlock(&f->lock); + return freelist; new_slab: @ mm/slub.c:2808 @ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, if (unlikely(!freelist)) { slab_out_of_memory(s, gfpflags, node); - return NULL; + goto out; } page = c->page; @ mm/slub.c:2821 @ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, goto new_slab; /* Slab failed checks. Next slab needed */ deactivate_slab(s, page, get_freepointer(s, freelist), c); - return freelist; + goto out; } /* @ mm/slub.c:2833 @ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, { void *p; unsigned long flags; + LIST_HEAD(tofree); local_irq_save(flags); #ifdef CONFIG_PREEMPTION @ mm/slub.c:2845 @ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, c = this_cpu_ptr(s->cpu_slab); #endif - p = ___slab_alloc(s, gfpflags, node, addr, c); + p = ___slab_alloc(s, gfpflags, node, addr, c, &tofree); local_irq_restore(flags); + free_delayed(&tofree); return p; } @ mm/slub.c:2881 @ static __always_inline void *slab_alloc_node(struct kmem_cache *s, unsigned long tid; struct obj_cgroup *objcg = NULL; + if (IS_ENABLED(CONFIG_PREEMPT_RT) && IS_ENABLED(CONFIG_DEBUG_ATOMIC_SLEEP)) + WARN_ON_ONCE(!preemptible() && + (system_state > SYSTEM_BOOTING && system_state < SYSTEM_SUSPEND)); + s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags); if (!s) return NULL; @ mm/slub.c:3050 @ static void __slab_free(struct kmem_cache *s, struct page *page, do { if (unlikely(n)) { - spin_unlock_irqrestore(&n->list_lock, flags); + raw_spin_unlock_irqrestore(&n->list_lock, flags); n = NULL; } prior = page->freelist; @ mm/slub.c:3082 @ static void __slab_free(struct kmem_cache *s, struct page *page, * Otherwise the list_lock will synchronize with * other processors updating the list of slabs. */ - spin_lock_irqsave(&n->list_lock, flags); + raw_spin_lock_irqsave(&n->list_lock, flags); } } @ mm/slub.c:3124 @ static void __slab_free(struct kmem_cache *s, struct page *page, add_partial(n, page, DEACTIVATE_TO_TAIL); stat(s, FREE_ADD_PARTIAL); } - spin_unlock_irqrestore(&n->list_lock, flags); + raw_spin_unlock_irqrestore(&n->list_lock, flags); return; slab_empty: @ mm/slub.c:3139 @ static void __slab_free(struct kmem_cache *s, struct page *page, remove_full(s, n, page); } - spin_unlock_irqrestore(&n->list_lock, flags); + raw_spin_unlock_irqrestore(&n->list_lock, flags); stat(s, FREE_SLAB); discard_slab(s, page); } @ mm/slub.c:3349 @ int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p) { struct kmem_cache_cpu *c; + LIST_HEAD(to_free); int i; struct obj_cgroup *objcg = NULL; + if (IS_ENABLED(CONFIG_PREEMPT_RT) && IS_ENABLED(CONFIG_DEBUG_ATOMIC_SLEEP)) + WARN_ON_ONCE(!preemptible() && + (system_state > SYSTEM_BOOTING && system_state < SYSTEM_SUSPEND)); + /* memcg and kmem_cache debug support */ s = slab_pre_alloc_hook(s, &objcg, size, flags); if (unlikely(!s)) @ mm/slub.c:3387 @ int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, * of re-populating per CPU c->freelist */ p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, - _RET_IP_, c); + _RET_IP_, c, &to_free); if (unlikely(!p[i])) goto error; @ mm/slub.c:3402 @ int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, } c->tid = next_tid(c->tid); local_irq_enable(); + free_delayed(&to_free); /* Clear memory outside IRQ disabled fastpath loop */ if (unlikely(slab_want_init_on_alloc(flags, s))) { @ mm/slub.c:3417 @ int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, return i; error: local_irq_enable(); + free_delayed(&to_free); slab_post_alloc_hook(s, objcg, flags, i, p); __kmem_cache_free_bulk(s, i, p); return 0; @ mm/slub.c:3553 @ static void init_kmem_cache_node(struct kmem_cache_node *n) { n->nr_partial = 0; - spin_lock_init(&n->list_lock); + raw_spin_lock_init(&n->list_lock); INIT_LIST_HEAD(&n->partial); #ifdef CONFIG_SLUB_DEBUG atomic_long_set(&n->nr_slabs, 0); @ mm/slub.c:3948 @ static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) struct page *page, *h; BUG_ON(irqs_disabled()); - spin_lock_irq(&n->list_lock); + raw_spin_lock_irq(&n->list_lock); list_for_each_entry_safe(page, h, &n->partial, slab_list) { if (!page->inuse) { remove_partial(n, page); @ mm/slub.c:3958 @ static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) "Objects remaining in %s on __kmem_cache_shutdown()"); } } - spin_unlock_irq(&n->list_lock); + raw_spin_unlock_irq(&n->list_lock); list_for_each_entry_safe(page, h, &discard, slab_list) discard_slab(s, page); @ mm/slub.c:4229 @ int __kmem_cache_shrink(struct kmem_cache *s) for (i = 0; i < SHRINK_PROMOTE_MAX; i++) INIT_LIST_HEAD(promote + i); - spin_lock_irqsave(&n->list_lock, flags); + raw_spin_lock_irqsave(&n->list_lock, flags); /* * Build lists of slabs to discard or promote. @ mm/slub.c:4260 @ int __kmem_cache_shrink(struct kmem_cache *s) for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) list_splice(promote + i, &n->partial); - spin_unlock_irqrestore(&n->list_lock, flags); + raw_spin_unlock_irqrestore(&n->list_lock, flags); /* Release empty slabs */ list_for_each_entry_safe(page, t, &discard, slab_list) @ mm/slub.c:4435 @ void __init kmem_cache_init(void) { static __initdata struct kmem_cache boot_kmem_cache, boot_kmem_cache_node; + int cpu; + + for_each_possible_cpu(cpu) { + raw_spin_lock_init(&per_cpu(slub_free_list, cpu).lock); + INIT_LIST_HEAD(&per_cpu(slub_free_list, cpu).list); + } if (debug_guardpage_minorder()) slub_max_order = 0; @ mm/slub.c:4628 @ static int validate_slab_node(struct kmem_cache *s, struct page *page; unsigned long flags; - spin_lock_irqsave(&n->list_lock, flags); + raw_spin_lock_irqsave(&n->list_lock, flags); list_for_each_entry(page, &n->partial, slab_list) { validate_slab(s, page); @ mm/slub.c:4650 @ static int validate_slab_node(struct kmem_cache *s, s->name, count, atomic_long_read(&n->nr_slabs)); out: - spin_unlock_irqrestore(&n->list_lock, flags); + raw_spin_unlock_irqrestore(&n->list_lock, flags); return count; } @ mm/slub.c:4701 @ static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) struct location *l; int order; + if (IS_ENABLED(CONFIG_PREEMPT_RT) && flags == GFP_ATOMIC) + return 0; + order = get_order(sizeof(struct location) * max); l = (void *)__get_free_pages(flags, order); @ mm/slub.c:4832 @ static int list_locations(struct kmem_cache *s, char *buf, if (!atomic_long_read(&n->nr_slabs)) continue; - spin_lock_irqsave(&n->list_lock, flags); + raw_spin_lock_irqsave(&n->list_lock, flags); list_for_each_entry(page, &n->partial, slab_list) process_slab(&t, s, page, alloc); list_for_each_entry(page, &n->full, slab_list) process_slab(&t, s, page, alloc); - spin_unlock_irqrestore(&n->list_lock, flags); + raw_spin_unlock_irqrestore(&n->list_lock, flags); } for (i = 0; i < t.count; i++) { @ mm/vmalloc.c:1545 @ static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) struct vmap_block *vb; struct vmap_area *va; unsigned long vb_idx; - int node, err; + int node, err, cpu; void *vaddr; node = numa_node_id(); @ mm/vmalloc.c:1582 @ static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) return ERR_PTR(err); } - vbq = &get_cpu_var(vmap_block_queue); + cpu = get_cpu_light(); + vbq = this_cpu_ptr(&vmap_block_queue); spin_lock(&vbq->lock); list_add_tail_rcu(&vb->free_list, &vbq->free); spin_unlock(&vbq->lock); - put_cpu_var(vmap_block_queue); + put_cpu_light(); return vaddr; } @ mm/vmalloc.c:1652 @ static void *vb_alloc(unsigned long size, gfp_t gfp_mask) struct vmap_block *vb; void *vaddr = NULL; unsigned int order; + int cpu; BUG_ON(offset_in_page(size)); BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); @ mm/vmalloc.c:1667 @ static void *vb_alloc(unsigned long size, gfp_t gfp_mask) order = get_order(size); rcu_read_lock(); - vbq = &get_cpu_var(vmap_block_queue); + cpu = get_cpu_light(); + vbq = this_cpu_ptr(&vmap_block_queue); list_for_each_entry_rcu(vb, &vbq->free, free_list) { unsigned long pages_off; @ mm/vmalloc.c:1691 @ static void *vb_alloc(unsigned long size, gfp_t gfp_mask) break; } - put_cpu_var(vmap_block_queue); + put_cpu_light(); rcu_read_unlock(); /* Allocate new block if nothing was found */ @ mm/vmstat.c:324 @ void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, long x; long t; + preempt_disable_rt(); x = delta + __this_cpu_read(*p); t = __this_cpu_read(pcp->stat_threshold); @ mm/vmstat.c:334 @ void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, x = 0; } __this_cpu_write(*p, x); + preempt_enable_rt(); } EXPORT_SYMBOL(__mod_zone_page_state); @ mm/vmstat.c:351 @ void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, delta >>= PAGE_SHIFT; } + preempt_disable_rt(); x = delta + __this_cpu_read(*p); t = __this_cpu_read(pcp->stat_threshold); @ mm/vmstat.c:361 @ void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, x = 0; } __this_cpu_write(*p, x); + preempt_enable_rt(); } EXPORT_SYMBOL(__mod_node_page_state); @ mm/vmstat.c:394 @ void __inc_zone_state(struct zone *zone, enum zone_stat_item item) s8 __percpu *p = pcp->vm_stat_diff + item; s8 v, t; + preempt_disable_rt(); v = __this_cpu_inc_return(*p); t = __this_cpu_read(pcp->stat_threshold); if (unlikely(v > t)) { @ mm/vmstat.c:403 @ void __inc_zone_state(struct zone *zone, enum zone_stat_item item) zone_page_state_add(v + overstep, zone, item); __this_cpu_write(*p, -overstep); } + preempt_enable_rt(); } void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) @ mm/vmstat.c:414 @ void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); + preempt_disable_rt(); v = __this_cpu_inc_return(*p); t = __this_cpu_read(pcp->stat_threshold); if (unlikely(v > t)) { @ mm/vmstat.c:423 @ void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) node_page_state_add(v + overstep, pgdat, item); __this_cpu_write(*p, -overstep); } + preempt_enable_rt(); } void __inc_zone_page_state(struct page *page, enum zone_stat_item item) @ mm/vmstat.c:444 @ void __dec_zone_state(struct zone *zone, enum zone_stat_item item) s8 __percpu *p = pcp->vm_stat_diff + item; s8 v, t; + preempt_disable_rt(); v = __this_cpu_dec_return(*p); t = __this_cpu_read(pcp->stat_threshold); if (unlikely(v < - t)) { @ mm/vmstat.c:453 @ void __dec_zone_state(struct zone *zone, enum zone_stat_item item) zone_page_state_add(v - overstep, zone, item); __this_cpu_write(*p, overstep); } + preempt_enable_rt(); } void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) @ mm/vmstat.c:464 @ void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); + preempt_disable_rt(); v = __this_cpu_dec_return(*p); t = __this_cpu_read(pcp->stat_threshold); if (unlikely(v < - t)) { @ mm/vmstat.c:473 @ void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) node_page_state_add(v - overstep, pgdat, item); __this_cpu_write(*p, overstep); } + preempt_enable_rt(); } void __dec_zone_page_state(struct page *page, enum zone_stat_item item) @ mm/workingset.c:435 @ static struct list_lru shadow_nodes; void workingset_update_node(struct xa_node *node) { + struct address_space *mapping; + /* * Track non-empty nodes that contain only shadow entries; * unlink those that contain pages or are being freed. @ mm/workingset.c:445 @ void workingset_update_node(struct xa_node *node) * already where they should be. The list_empty() test is safe * as node->private_list is protected by the i_pages lock. */ - VM_WARN_ON_ONCE(!irqs_disabled()); /* For __inc_lruvec_page_state */ + mapping = container_of(node->array, struct address_space, i_pages); + lockdep_assert_held(&mapping->i_pages.xa_lock); if (node->count && node->count == node->nr_values) { if (list_empty(&node->private_list)) { @ mm/z3fold.c:626 @ static inline void add_to_unbuddied(struct z3fold_pool *pool, { if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 || zhdr->middle_chunks == 0) { - struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied); - + struct list_head *unbuddied; int freechunks = num_free_chunks(zhdr); + + migrate_disable(); + unbuddied = this_cpu_ptr(pool->unbuddied); spin_lock(&pool->lock); list_add(&zhdr->buddy, &unbuddied[freechunks]); spin_unlock(&pool->lock); zhdr->cpu = smp_processor_id(); - put_cpu_ptr(pool->unbuddied); + migrate_enable(); } } @ mm/z3fold.c:885 @ static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool, int chunks = size_to_chunks(size), i; lookup: + migrate_disable(); /* First, try to find an unbuddied z3fold page. */ - unbuddied = get_cpu_ptr(pool->unbuddied); + unbuddied = this_cpu_ptr(pool->unbuddied); for_each_unbuddied_list(i, chunks) { struct list_head *l = &unbuddied[i]; @ mm/z3fold.c:905 @ static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool, !z3fold_page_trylock(zhdr)) { spin_unlock(&pool->lock); zhdr = NULL; - put_cpu_ptr(pool->unbuddied); + migrate_enable(); if (can_sleep) cond_resched(); goto lookup; @ mm/z3fold.c:919 @ static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool, test_bit(PAGE_CLAIMED, &page->private)) { z3fold_page_unlock(zhdr); zhdr = NULL; - put_cpu_ptr(pool->unbuddied); + migrate_enable(); if (can_sleep) cond_resched(); goto lookup; @ mm/z3fold.c:934 @ static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool, kref_get(&zhdr->refcount); break; } - put_cpu_ptr(pool->unbuddied); + migrate_enable(); if (!zhdr) { int cpu; @ mm/zsmalloc.c:60 @ #include <linux/wait.h> #include <linux/pagemap.h> #include <linux/fs.h> +#include <linux/local_lock.h> #define ZSPAGE_MAGIC 0x58 @ mm/zsmalloc.c:81 @ #define ZS_HANDLE_SIZE (sizeof(unsigned long)) +#ifdef CONFIG_PREEMPT_RT + +struct zsmalloc_handle { + unsigned long addr; + spinlock_t lock; +}; + +#define ZS_HANDLE_ALLOC_SIZE (sizeof(struct zsmalloc_handle)) + +#else + +#define ZS_HANDLE_ALLOC_SIZE (sizeof(unsigned long)) +#endif + /* * Object location (<PFN>, <obj_idx>) is encoded as * a single (unsigned long) handle value. @ mm/zsmalloc.c:311 @ struct zspage { }; struct mapping_area { + local_lock_t lock; char *vm_buf; /* copy buffer for objects that span pages */ char *vm_addr; /* address of kmap_atomic()'ed pages */ enum zs_mapmode vm_mm; /* mapping mode */ @ mm/zsmalloc.c:341 @ static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} static int create_cache(struct zs_pool *pool) { - pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, + pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_ALLOC_SIZE, 0, 0, NULL); if (!pool->handle_cachep) return 1; @ mm/zsmalloc.c:365 @ static void destroy_cache(struct zs_pool *pool) static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) { - return (unsigned long)kmem_cache_alloc(pool->handle_cachep, - gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); + void *p; + + p = kmem_cache_alloc(pool->handle_cachep, + gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); +#ifdef CONFIG_PREEMPT_RT + if (p) { + struct zsmalloc_handle *zh = p; + + spin_lock_init(&zh->lock); + } +#endif + return (unsigned long)p; } +#ifdef CONFIG_PREEMPT_RT +static struct zsmalloc_handle *zs_get_pure_handle(unsigned long handle) +{ + return (void *)(handle &~((1 << OBJ_TAG_BITS) - 1)); +} +#endif + static void cache_free_handle(struct zs_pool *pool, unsigned long handle) { kmem_cache_free(pool->handle_cachep, (void *)handle); @ mm/zsmalloc.c:404 @ static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) static void record_obj(unsigned long handle, unsigned long obj) { +#ifdef CONFIG_PREEMPT_RT + struct zsmalloc_handle *zh = zs_get_pure_handle(handle); + + WRITE_ONCE(zh->addr, obj); +#else /* * lsb of @obj represents handle lock while other bits * represent object value the handle is pointing so * updating shouldn't do store tearing. */ WRITE_ONCE(*(unsigned long *)handle, obj); +#endif } /* zpool driver */ @ mm/zsmalloc.c:497 @ MODULE_ALIAS("zpool-zsmalloc"); #endif /* CONFIG_ZPOOL */ /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ -static DEFINE_PER_CPU(struct mapping_area, zs_map_area); +static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { + /* XXX remove this and use a spin_lock_t in pin_tag() */ + .lock = INIT_LOCAL_LOCK(lock), +}; static bool is_zspage_isolated(struct zspage *zspage) { @ mm/zsmalloc.c:910 @ static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) static unsigned long handle_to_obj(unsigned long handle) { +#ifdef CONFIG_PREEMPT_RT + struct zsmalloc_handle *zh = zs_get_pure_handle(handle); + + return zh->addr; +#else return *(unsigned long *)handle; +#endif } static unsigned long obj_to_head(struct page *page, void *obj) @ mm/zsmalloc.c:930 @ static unsigned long obj_to_head(struct page *page, void *obj) static inline int testpin_tag(unsigned long handle) { +#ifdef CONFIG_PREEMPT_RT + struct zsmalloc_handle *zh = zs_get_pure_handle(handle); + + return spin_is_locked(&zh->lock); +#else return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); +#endif } static inline int trypin_tag(unsigned long handle) { +#ifdef CONFIG_PREEMPT_RT + struct zsmalloc_handle *zh = zs_get_pure_handle(handle); + + return spin_trylock(&zh->lock); +#else return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); +#endif } static void pin_tag(unsigned long handle) __acquires(bitlock) { +#ifdef CONFIG_PREEMPT_RT + struct zsmalloc_handle *zh = zs_get_pure_handle(handle); + + return spin_lock(&zh->lock); +#else bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); +#endif } static void unpin_tag(unsigned long handle) __releases(bitlock) { +#ifdef CONFIG_PREEMPT_RT + struct zsmalloc_handle *zh = zs_get_pure_handle(handle); + + return spin_unlock(&zh->lock); +#else bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); +#endif } static void reset_page(struct page *page) @ mm/zsmalloc.c:1353 @ void *zs_map_object(struct zs_pool *pool, unsigned long handle, class = pool->size_class[class_idx]; off = (class->size * obj_idx) & ~PAGE_MASK; - area = &get_cpu_var(zs_map_area); + local_lock(&zs_map_area.lock); + area = this_cpu_ptr(&zs_map_area); area->vm_mm = mm; if (off + class->size <= PAGE_SIZE) { /* this object is contained entirely within a page */ @ mm/zsmalloc.c:1408 @ void zs_unmap_object(struct zs_pool *pool, unsigned long handle) __zs_unmap_object(area, pages, off, class->size); } - put_cpu_var(zs_map_area); + local_unlock(&zs_map_area.lock); migrate_read_unlock(zspage); unpin_tag(handle); @ mm/zswap.c:21 @ #include <linux/highmem.h> #include <linux/slab.h> #include <linux/spinlock.h> +#include <linux/local_lock.h> #include <linux/types.h> #include <linux/atomic.h> #include <linux/frontswap.h> @ mm/zswap.c:391 @ static struct zswap_entry *zswap_entry_find_get(struct rb_root *root, /********************************* * per-cpu code **********************************/ -static DEFINE_PER_CPU(u8 *, zswap_dstmem); +struct zswap_comp { + /* Used for per-CPU dstmem and tfm */ + local_lock_t lock; + u8 *dstmem; +}; + +static DEFINE_PER_CPU(struct zswap_comp, zswap_comp) = { + .lock = INIT_LOCAL_LOCK(lock), +}; static int zswap_dstmem_prepare(unsigned int cpu) { + struct zswap_comp *zcomp; u8 *dst; dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu)); if (!dst) return -ENOMEM; - per_cpu(zswap_dstmem, cpu) = dst; + zcomp = per_cpu_ptr(&zswap_comp, cpu); + zcomp->dstmem = dst; return 0; } static int zswap_dstmem_dead(unsigned int cpu) { - u8 *dst; + struct zswap_comp *zcomp; - dst = per_cpu(zswap_dstmem, cpu); - kfree(dst); - per_cpu(zswap_dstmem, cpu) = NULL; + zcomp = per_cpu_ptr(&zswap_comp, cpu); + kfree(zcomp->dstmem); + zcomp->dstmem = NULL; return 0; } @ mm/zswap.c:933 @ static int zswap_writeback_entry(struct zpool *pool, unsigned long handle) dlen = PAGE_SIZE; src = (u8 *)zhdr + sizeof(struct zswap_header); dst = kmap_atomic(page); - tfm = *get_cpu_ptr(entry->pool->tfm); + local_lock(&zswap_comp.lock); + tfm = *this_cpu_ptr(entry->pool->tfm); ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen); - put_cpu_ptr(entry->pool->tfm); + local_unlock(&zswap_comp.lock); kunmap_atomic(dst); BUG_ON(ret); BUG_ON(dlen != PAGE_SIZE); @ mm/zswap.c:1089 @ static int zswap_frontswap_store(unsigned type, pgoff_t offset, } /* compress */ - dst = get_cpu_var(zswap_dstmem); - tfm = *get_cpu_ptr(entry->pool->tfm); + local_lock(&zswap_comp.lock); + dst = *this_cpu_ptr(&zswap_comp.dstmem); + tfm = *this_cpu_ptr(entry->pool->tfm); src = kmap_atomic(page); ret = crypto_comp_compress(tfm, src, PAGE_SIZE, dst, &dlen); kunmap_atomic(src); - put_cpu_ptr(entry->pool->tfm); if (ret) { ret = -EINVAL; goto put_dstmem; @ mm/zswap.c:1118 @ static int zswap_frontswap_store(unsigned type, pgoff_t offset, memcpy(buf, &zhdr, hlen); memcpy(buf + hlen, dst, dlen); zpool_unmap_handle(entry->pool->zpool, handle); - put_cpu_var(zswap_dstmem); + local_unlock(&zswap_comp.lock); /* populate entry */ entry->offset = offset; @ mm/zswap.c:1146 @ static int zswap_frontswap_store(unsigned type, pgoff_t offset, return 0; put_dstmem: - put_cpu_var(zswap_dstmem); + local_unlock(&zswap_comp.lock); zswap_pool_put(entry->pool); freepage: zswap_entry_cache_free(entry); @ mm/zswap.c:1191 @ static int zswap_frontswap_load(unsigned type, pgoff_t offset, if (zpool_evictable(entry->pool->zpool)) src += sizeof(struct zswap_header); dst = kmap_atomic(page); - tfm = *get_cpu_ptr(entry->pool->tfm); + local_lock(&zswap_comp.lock); + tfm = *this_cpu_ptr(entry->pool->tfm); ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen); - put_cpu_ptr(entry->pool->tfm); + local_unlock(&zswap_comp.lock); kunmap_atomic(dst); zpool_unmap_handle(entry->pool->zpool, entry->handle); BUG_ON(ret); @ net/Kconfig:285 @ config CGROUP_NET_CLASSID config NET_RX_BUSY_POLL bool - default y + default y if !PREEMPT_RT config BQL bool @ net/core/dev.c:224 @ static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) static inline void rps_lock(struct softnet_data *sd) { #ifdef CONFIG_RPS - spin_lock(&sd->input_pkt_queue.lock); + raw_spin_lock(&sd->input_pkt_queue.raw_lock); #endif } static inline void rps_unlock(struct softnet_data *sd) { #ifdef CONFIG_RPS - spin_unlock(&sd->input_pkt_queue.lock); + raw_spin_unlock(&sd->input_pkt_queue.raw_lock); #endif } @ net/core/dev.c:3053 @ static void __netif_reschedule(struct Qdisc *q) sd->output_queue_tailp = &q->next_sched; raise_softirq_irqoff(NET_TX_SOFTIRQ); local_irq_restore(flags); + preempt_check_resched_rt(); } void __netif_schedule(struct Qdisc *q) @ net/core/dev.c:3116 @ void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) __this_cpu_write(softnet_data.completion_queue, skb); raise_softirq_irqoff(NET_TX_SOFTIRQ); local_irq_restore(flags); + preempt_check_resched_rt(); } EXPORT_SYMBOL(__dev_kfree_skb_irq); @ net/core/dev.c:3791 @ static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, * This permits qdisc->running owner to get the lock more * often and dequeue packets faster. */ +#ifdef CONFIG_PREEMPT_RT + contended = true; +#else contended = qdisc_is_running(q); +#endif if (unlikely(contended)) spin_lock(&q->busylock); @ net/core/dev.c:4594 @ static int enqueue_to_backlog(struct sk_buff *skb, int cpu, rps_unlock(sd); local_irq_restore(flags); + preempt_check_resched_rt(); atomic_long_inc(&skb->dev->rx_dropped); kfree_skb(skb); @ net/core/dev.c:4810 @ static int netif_rx_internal(struct sk_buff *skb) struct rps_dev_flow voidflow, *rflow = &voidflow; int cpu; - preempt_disable(); + migrate_disable(); rcu_read_lock(); cpu = get_rps_cpu(skb->dev, skb, &rflow); @ net/core/dev.c:4820 @ static int netif_rx_internal(struct sk_buff *skb) ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); rcu_read_unlock(); - preempt_enable(); + migrate_enable(); } else #endif { unsigned int qtail; - ret = enqueue_to_backlog(skb, get_cpu(), &qtail); - put_cpu(); + ret = enqueue_to_backlog(skb, get_cpu_light(), &qtail); + put_cpu_light(); } return ret; } @ net/core/dev.c:4866 @ int netif_rx_ni(struct sk_buff *skb) trace_netif_rx_ni_entry(skb); - preempt_disable(); + local_bh_disable(); err = netif_rx_internal(skb); - if (local_softirq_pending()) - do_softirq(); - preempt_enable(); + local_bh_enable(); trace_netif_rx_ni_exit(err); return err; @ net/core/dev.c:6344 @ static void net_rps_action_and_irq_enable(struct softnet_data *sd) sd->rps_ipi_list = NULL; local_irq_enable(); + preempt_check_resched_rt(); /* Send pending IPI's to kick RPS processing on remote cpus. */ net_rps_send_ipi(remsd); } else #endif local_irq_enable(); + preempt_check_resched_rt(); } static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) @ net/core/dev.c:6429 @ void __napi_schedule(struct napi_struct *n) local_irq_save(flags); ____napi_schedule(this_cpu_ptr(&softnet_data), n); local_irq_restore(flags); + preempt_check_resched_rt(); } EXPORT_SYMBOL(__napi_schedule); @ net/core/dev.c:10974 @ static int dev_cpu_dead(unsigned int oldcpu) raise_softirq_irqoff(NET_TX_SOFTIRQ); local_irq_enable(); + preempt_check_resched_rt(); #ifdef CONFIG_RPS remsd = oldsd->rps_ipi_list; @ net/core/dev.c:10988 @ static int dev_cpu_dead(unsigned int oldcpu) netif_rx_ni(skb); input_queue_head_incr(oldsd); } - while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { + while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { netif_rx_ni(skb); input_queue_head_incr(oldsd); } @ net/core/dev.c:11304 @ static int __init net_dev_init(void) INIT_WORK(flush, flush_backlog); - skb_queue_head_init(&sd->input_pkt_queue); + skb_queue_head_init_raw(&sd->input_pkt_queue); skb_queue_head_init(&sd->process_queue); #ifdef CONFIG_XFRM_OFFLOAD skb_queue_head_init(&sd->xfrm_backlog); @ net/core/gen_estimator.c:45 @ struct net_rate_estimator { struct gnet_stats_basic_packed *bstats; spinlock_t *stats_lock; - seqcount_t *running; + net_seqlock_t *running; struct gnet_stats_basic_cpu __percpu *cpu_bstats; u8 ewma_log; u8 intvl_log; /* period : (250ms << intvl_log) */ @ net/core/gen_estimator.c:128 @ int gen_new_estimator(struct gnet_stats_basic_packed *bstats, struct gnet_stats_basic_cpu __percpu *cpu_bstats, struct net_rate_estimator __rcu **rate_est, spinlock_t *lock, - seqcount_t *running, + net_seqlock_t *running, struct nlattr *opt) { struct gnet_estimator *parm = nla_data(opt); @ net/core/gen_estimator.c:229 @ int gen_replace_estimator(struct gnet_stats_basic_packed *bstats, struct gnet_stats_basic_cpu __percpu *cpu_bstats, struct net_rate_estimator __rcu **rate_est, spinlock_t *lock, - seqcount_t *running, struct nlattr *opt) + net_seqlock_t *running, struct nlattr *opt) { return gen_new_estimator(bstats, cpu_bstats, rate_est, lock, running, opt); @ net/core/gen_stats.c:140 @ __gnet_stats_copy_basic_cpu(struct gnet_stats_basic_packed *bstats, } void -__gnet_stats_copy_basic(const seqcount_t *running, +__gnet_stats_copy_basic(net_seqlock_t *running, struct gnet_stats_basic_packed *bstats, struct gnet_stats_basic_cpu __percpu *cpu, struct gnet_stats_basic_packed *b) @ net/core/gen_stats.c:153 @ __gnet_stats_copy_basic(const seqcount_t *running, } do { if (running) - seq = read_seqcount_begin(running); + seq = net_seq_begin(running); bstats->bytes = b->bytes; bstats->packets = b->packets; - } while (running && read_seqcount_retry(running, seq)); + } while (running && net_seq_retry(running, seq)); } EXPORT_SYMBOL(__gnet_stats_copy_basic); static int -___gnet_stats_copy_basic(const seqcount_t *running, +___gnet_stats_copy_basic(net_seqlock_t *running, struct gnet_dump *d, struct gnet_stats_basic_cpu __percpu *cpu, struct gnet_stats_basic_packed *b, @ net/core/gen_stats.c:207 @ ___gnet_stats_copy_basic(const seqcount_t *running, * if the room in the socket buffer was not sufficient. */ int -gnet_stats_copy_basic(const seqcount_t *running, +gnet_stats_copy_basic(net_seqlock_t *running, struct gnet_dump *d, struct gnet_stats_basic_cpu __percpu *cpu, struct gnet_stats_basic_packed *b) @ net/core/gen_stats.c:231 @ EXPORT_SYMBOL(gnet_stats_copy_basic); * if the room in the socket buffer was not sufficient. */ int -gnet_stats_copy_basic_hw(const seqcount_t *running, +gnet_stats_copy_basic_hw(net_seqlock_t *running, struct gnet_dump *d, struct gnet_stats_basic_cpu __percpu *cpu, struct gnet_stats_basic_packed *b) @ net/core/sock.c:3059 @ void lock_sock_nested(struct sock *sk, int subclass) if (sk->sk_lock.owned) __lock_sock(sk); sk->sk_lock.owned = 1; - spin_unlock(&sk->sk_lock.slock); + spin_unlock_bh(&sk->sk_lock.slock); /* * The sk_lock has mutex_lock() semantics here: */ mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); - local_bh_enable(); } EXPORT_SYMBOL(lock_sock_nested); @ net/core/sock.c:3112 @ bool lock_sock_fast(struct sock *sk) __lock_sock(sk); sk->sk_lock.owned = 1; - spin_unlock(&sk->sk_lock.slock); + spin_unlock_bh(&sk->sk_lock.slock); /* * The sk_lock has mutex_lock() semantics here: */ mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); - local_bh_enable(); return true; } EXPORT_SYMBOL(lock_sock_fast); @ net/ipv4/inet_hashtables.c:640 @ int __inet_hash(struct sock *sk, struct sock *osk) int err = 0; if (sk->sk_state != TCP_LISTEN) { + local_bh_disable(); inet_ehash_nolisten(sk, osk, NULL); + local_bh_enable(); return 0; } WARN_ON(!sk_unhashed(sk)); @ net/ipv4/inet_hashtables.c:674 @ int inet_hash(struct sock *sk) { int err = 0; - if (sk->sk_state != TCP_CLOSE) { - local_bh_disable(); + if (sk->sk_state != TCP_CLOSE) err = __inet_hash(sk, NULL); - local_bh_enable(); - } return err; } @ net/ipv4/inet_hashtables.c:686 @ void inet_unhash(struct sock *sk) struct inet_hashinfo *hashinfo = sk->sk_prot->h.hashinfo; struct inet_listen_hashbucket *ilb = NULL; spinlock_t *lock; + bool state_listen; if (sk_unhashed(sk)) return; if (sk->sk_state == TCP_LISTEN) { + state_listen = true; ilb = &hashinfo->listening_hash[inet_sk_listen_hashfn(sk)]; - lock = &ilb->lock; + spin_lock(&ilb->lock); } else { + state_listen = false; lock = inet_ehash_lockp(hashinfo, sk->sk_hash); + spin_lock_bh(lock); } - spin_lock_bh(lock); if (sk_unhashed(sk)) goto unlock; @ net/ipv4/inet_hashtables.c:712 @ void inet_unhash(struct sock *sk) __sk_nulls_del_node_init_rcu(sk); sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); unlock: - spin_unlock_bh(lock); + if (state_listen) + spin_unlock(&ilb->lock); + else + spin_unlock_bh(lock); } EXPORT_SYMBOL_GPL(inet_unhash); @ net/ipv6/inet6_hashtables.c:336 @ int inet6_hash(struct sock *sk) { int err = 0; - if (sk->sk_state != TCP_CLOSE) { - local_bh_disable(); + if (sk->sk_state != TCP_CLOSE) err = __inet_hash(sk, NULL); - local_bh_enable(); - } return err; } @ net/sched/sch_api.c:1267 @ static struct Qdisc *qdisc_create(struct net_device *dev, rcu_assign_pointer(sch->stab, stab); } if (tca[TCA_RATE]) { - seqcount_t *running; + net_seqlock_t *running; err = -EOPNOTSUPP; if (sch->flags & TCQ_F_MQROOT) { @ net/sched/sch_generic.c:581 @ struct Qdisc noop_qdisc = { .ops = &noop_qdisc_ops, .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), .dev_queue = &noop_netdev_queue, +#ifdef CONFIG_PREEMPT_RT + .running = __SEQLOCK_UNLOCKED(noop_qdisc.running), +#else .running = SEQCNT_ZERO(noop_qdisc.running), +#endif .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), .gso_skb = { .next = (struct sk_buff *)&noop_qdisc.gso_skb, @ net/sched/sch_generic.c:896 @ struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, lockdep_set_class(&sch->seqlock, dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); +#ifdef CONFIG_PREEMPT_RT + seqlock_init(&sch->running); + lockdep_set_class(&sch->running.lock, + dev->qdisc_running_key ?: &qdisc_running_key); +#else seqcount_init(&sch->running); lockdep_set_class(&sch->running, dev->qdisc_running_key ?: &qdisc_running_key); +#endif sch->ops = ops; sch->flags = ops->static_flags; @ net/sunrpc/svc_xprt.c:425 @ void svc_xprt_do_enqueue(struct svc_xprt *xprt) if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) return; - cpu = get_cpu(); + cpu = get_cpu_light(); pool = svc_pool_for_cpu(xprt->xpt_server, cpu); atomic_long_inc(&pool->sp_stats.packets); @ net/sunrpc/svc_xprt.c:449 @ void svc_xprt_do_enqueue(struct svc_xprt *xprt) rqstp = NULL; out_unlock: rcu_read_unlock(); - put_cpu(); + put_cpu_light(); trace_svc_xprt_do_enqueue(xprt, rqstp); } EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue); @ net/xfrm/xfrm_state.c:2676 @ int __net_init xfrm_state_init(struct net *net) net->xfrm.state_num = 0; INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize); spin_lock_init(&net->xfrm.xfrm_state_lock); - seqcount_init(&net->xfrm.xfrm_state_hash_generation); + seqcount_spinlock_init(&net->xfrm.xfrm_state_hash_generation, + &net->xfrm.xfrm_state_lock); return 0; out_byspi: