
Analyzing RTLinux/GPL Source Code for Education

She Kairui, Bai Shuwei, Zhou Qingguo, Nicholas Mc Guire, and Li Lian
Distributed and Embedded Systems Lab

School of Information Science and Engineering

Lanzhou University

Tianshui South Road 222,Lanzhou,P.R.China

{shekr06,baishw06}@lzu.cn

{zhouqg,mcguire}@lzu.edu.cn

Abstract

With decades development, RTLinux/GPL was widespread applied to both scientific research realm and
industry. RTLinux/GPL has made a grate success in these realm, But has little affection in education,
especially the undergraduate education. Most of the RTLinux/GPL documentation are focus on the
practicability, other than emphasizing the basic RealTime Operatiing System theory. So RTLinux/GPL
is very hard to applied to education realm. This article aimed at RTOS education, containing real time
principle of RTLinux/GPL and the RTLinux/GPL modules implementation in detail. It would make
the realtime operating system learning process easier with both theory and real source code analyze, and
would attract more people to interested in RTLinux/GPL. This article presented RTLinux/GPL principle
and implementation details, containning realtime clock, interrupt, realtime schedule strategy. We hope
this article can help people to apprehend RTOS, especially the RTLinux/GPL.

1 Introduction

Nowadays, application of RTOS(RealTime Operat-
ing System) has becoming more and more prevalent,
resulting that RTOS takes more and more important
role in industry. So the research and development of
RTOS is very active. But RTOS has little affection in
education, especially the undergraduate education,
for lack of appropriate document and teaching ma-
terial. The RTOS educational instruction only focus
on the essential RealTime System principle, without
abundant RealTime case study.

RTLinux/GPL is distributed under GPL, This
feature is worthful, students can get RTLinux/GPL
source code freely, even they can modify the source
code. But most document of RTLinux/GPL are in-
troductory or about Application Programming Inter-
face, which with little corresponding principle, which
makes newcomers shrink back at the sight.

In order to further spread the RTOS in ed-
ucation realm, we take the RTLinux/GPL as an
example, we will explain the essential principle of
RTOS,such as RealTime schedule algorithm, and

the concrete implementation in RTLinux/GPL. This
article covers RealTime Operating System Archi-
tecture, RTLinux/GPL implement principle, clock,
timer, interrupt management, RealTime schedule al-
gorithm(RM,EDF), and the implementation dissec-
tion of these mentioned concepts in RTLinux/GPL.

2 RealTime OS and RTLinux/GPL

Generally, RTOS refer to Operating System with cer-
tain real time resource schedule and communication
capability[1]. According to the real time capability,
RTOS can classified as Hard RTOS and Soft RTOS.
In this article the referred RealTime always indicate
Hard RealTime,except for particular declaration.

During the RTOS design phase, designer must
consider one basic conflict requirement, on the one
hand the custom anticipate the target system sup-
port hard real time capability, on the other hand they
also want the the system provide abundant function
and feature like desktop PC system. There exists
two solution to dilemma: Expand the exists RTOS,

∗This research was supported in part by Cold and Arid Regions Environment and Engineering Research Institution, Chinese

Academy of Sciences

1

or make a general purpose operating system Real-
Time capable via add certain software layer. this
article take RTLinux/GPL as an example, explain-
ing the second solution implementation in detail.[2]

As general purpose OS, Linux system is a time
sharing OS based on time slide Round Robin algo-
rithm, further more, Linux kernel is nonpreemptive.
generally, Linux time resolution is 10ms, and not sat-
isfy the hard real time requirement.

RTLinux/GPL is a typical dual-kernel, one is
Linux kernel, which provide various features of gen-
eral purpose OS, other one is RTLinux kernel, which
support hard real time capability. Figure 1 illustrate
the RTLinux/GPL architecture.

FIGURE 1: RTLinux/GPL Runtime
Model

3 Clock and Timer

Clock is the hardware resource used for time man-
agement in computer. Timer is hardware or soft-
ware facility that allows functions to be invoked at
some future moment,after a given time interval has
elapsed[3]. Generally speaking, hardware clock con-
tain a hardware timer, but the only hardware timer is
far from enough in multi-task system. So multi-task
system need software timer to provide more timers.

This section will describe the RTLinux/GPL low
level hardware clock management and soft timer
management.

3.1 Clock

The current RTLinux/GPL version support two
kinds of hardware timers, APIC and 8254, they are
used for multi-processor system and uni-processor
system respectively. RTLinux/GPL provide the
identical clock control API to manage both hardware
clock. We can use the API to achieve timer setting,
read or write time,etc.

The RTLinux/GPL clock control APIs:

int init(struct rtl_clock *c);

void uninit(struct rtl_clock *c);

hrtime_t gethrtime(struct rtl_clock *c);

int sethrtime(struct rtl_clock *c, hrtime_t t);

int settimer(struct rtl_clock *c,

hrtime_t interval);

int settimermode(struct rtl_clock *c, int mode);

void handler(struct pt_regs *r);

3.2 Timer

RTLinux/GPL can provide one or more soft timer for
each real time task, and RTLinux/GPL use linked-
list to management the soft timer[4]. Generally,all
soft timer use the same low level hardware timer,
operating system will select such soft timer in the
linked-list based on certain timer schedule algorithm,
then use the selected soft timer structure to set the
hardware timer via timer control API. The Timer In-
terrupt will trigger task schedule at the special mo-
ment. How to operate the soft timer, such as create
and destroy? RTLinux/GPL soft timer API imple-
mentation POSIX compliant.

Timer manage related API:

int timer_create(clockid_t clock_id,

const struct sigevent *signal_specification,

timer_t *timer_ptr);

int timer_gettime(timer_t timer_id,

struct itimerspec *ts_set);

int timer_settime(timer_t timer_id, int flags,

const struct itimerspec *new_setting,

struct itimerspec *old_setting);

int timer_delete(timer_t timer_id);

Figure 2 illustrate clock and timer hierarchy
model.

FIGURE 2: Clock and Timer Hierarchy
Model

2

4 Interupt

In this section, we will start with Linux Interrupt,
and then discuss RTLinux Interrupt implementation.

IBM compatible PC use two 8259A chips in cas-
cade to make up of the PIC(Programmable Interrupt
Controller), which can provide 15 IRQs. Each hard-
ware device controller capable of issuing interrupt
requests to the PIC, PIC can converts interrupt re-
quest into a corresponding interrupt vector and then
store the vector. After PIC send a raised signal to
the processor INTR pin, PIC will wait until CPU ac-
knowledge. CPU would use this interrupt vector as
index and get a corresponding interrupt service rou-
tine entry from IDT(Interrupt Description Table).

As for x86 architecture, CPU support 256 inter-
rupt vector, IDT data structure is an array named
idt table, witch includes 256 entries.

interrupt initialization:

head.S is part of the uncompressed section of the
vmlinuz image that is directly called by the boot-
loader - it is responsible for basic setup of the low
level resources so that the hardware is actually ac-
cessable, it then calls the start kernel symbol with is
the entry point into the decompressed kerner prope.

call SYSTEM NAME(start kernel)

start kernel is the compressed kernel entry, ini-
tialization of 8259A chips and interrupt gate is per-
formed by the function call init IRQ.

RTLinux/GPL running as modules after Linux
kernel startup. RTLinux/GPL will takeover the
Interrupt control when these modules was loded.
RTLinux/GPL modules will patch the running linux
kernel.

In linux each interrupt will come to the function
common interrupt, and then jump to do IRQ(jmp
do IRQ). The primary role of patching is to change
the jump destination to RTLinux interrupt en-
try(jmp rtl intercept), so all interupt will be inter-
cepted by RTLinux/GPL.

Figure 3[5] illustrate the RTLinux/GPL inter-
rupt intercept

IDTR

IDT

Interrupt Vector V

V

OFFSET

Code Segment

jmp rtl_intercept

RTLinux Interrupt
Service Entry

common_Interrupt

... ...

CDTR/LDTR

Segment Selector

INTR
Gate

OFFSET

Segment
Descriptor

GDT/LDT

FIGURE 3: RTLinux/GPL Interrupt In-
tercept

RTLinux interrupt will be responsed immedi-
ately, as for Linux interrupt, if Linux interrupt is
enable, Linux interrupt service routine will be called
immediately, otherwise this Linux interrupt will be
blocked until Linux interrupt is enabled. This pro-
cess known as Soft Interrupt.

RTLinux interrupt API:

//add/remove real time interrupt handlers

int rtl_request_irq(unsigned int irq,

unsigned int (*handler)(unsigned int irq,

struct pt_regs *regs));

int rtl_free_irq(unsigned int irq);

//install/remove software interrupt handlers

int rtl_get_soft_irq(void (*handler)

(int, void *, struct pt_regs *),

const char * devname);

void rtl_free_soft_irq(unsigned int irq);

//schedule a Linux interrupt

void rtl_global_pend_irq(int irq);

The function schedule the interrupt specified by
argument irq to be happen when the system enters
the Linux mode.

5 Schedule Policies of Real-

Time Operating System

Except for high resolution clock management and ef-
ficient interrupt process capability, task schedule pol-
icy is another critical factor directly affect the Real
Time capability in the multi-task System. A multi-
task System allows more than one task to be loaded
into the executable memory at a time[6], the loaded

3

tasks share the CPU, so how to arrange the task
execute sequence is important? We can choose ap-
propriate schedule algorithm for corresponding re-
quirement. The purpose of a real-time scheduling
algorithm is to ensure critical timing constraints.
RTLinux/GPL is a multi-task system with real time
capability, and RTLinux/GPL implemented two pri-
ority based schedule algorithm,RM(Rate Monotonic)
and EDF(Earliest Deadline First). RM schedule al-
gorithm based on static priority, and EDF based
on dynamic priority[7]. Static priority means each
task was assigned a fixed priority. Generally, pri-
ority assigning was according to the task attribute,
In RTLinux/GPL, realtime task always with higher
priority than non-realtime task. Dynamic priority
means the task priority is alterable in term of its re-
source demands, so dynamic priority schedule algo-
rithm is more flexible for task schedule and resource
assign.

5.1 RealTime Task, Priority, Pre-
emptible

Before schedule policies presentation, I will explain
several important concept firstly.

Real-Time task: The scheduler operational ob-
jects are real-time tasks, which require the tasks
must be executed or finished at a given time(typically
milli- or microseconds).

Priority: The priority is based on a predeter-
mined assignment value, or importance to different
types of tasks. In the RTLinux system, the Linux
kernel has the lowest priority, and the real-time
threads has the high priority(not less than 1000).

Preemptible: If the higher priority task could
preempt CPU from the running task with lower pri-
ority by force, the system is preemptible, or non-
preemptible. Such as, the old linux distributions
are non-preemptible, but the RTLinux system is pre-
emptible.

5.2 priority based Rate Monotonic al-
gorithm

5.2.1 Rate Monotonic algorithm

Rate Monotonic algorithm based on fixed priority,
system assign a priority for each task according to
the task expected execution time, task with less ex-
ecution time will assigned higher priority.

RM algorithm principle:

• schedule independent periodic task with fixed
priority.

• priority assign policy: less cycle task will assign
higher priority, assume cycle of non-periodic
task is infinite.

• higher priority preemption.

following example would illustrate the the RM al-
gorithm, considering three tasks: T1, T2, T3, T1 and
T2 are periodic task, cycle of T1 is P1=5s, cycle of
T2 is P2=10s, the task execution time is C1=C2=2s,
T3 is non-periodic task, execution time is C3=5s, as-
sume three tasks are ready at the same time, Figure
4 is the RM task schedule diagram.

FIGURE 4: RM Task Schedule Diagram

The diagram reveal that the task with least cycle is
T1, which was assigned highest priority. Task T1 was
first scheduled before task T2 and T3, and T1 can
preempt T3. T2 was scheduled after T1 and before
T3, T3 was last scheduled.[8]

In order to work correctly, certain preemption
must be satisfied :

C1

T1

+
C2

T2

+ ... +
Cn

Tn
≤ n(21/2 − 1)

n is the total task number in the SystemCi(i ≤
n) stands for the longest execution time of task i,
Ti(i ≤ n)stands for the cycle of task i.

5.3 RM algorithm implementation in
RTLinux/GPL

considering following code fragment

257 if ((t->pending & ~t->blocked) &&

258 (!new_task || (cmp_prio(t, new_task)>0))) {

259 #ifdef CONFIG_RTL_SRP

260 if (!current_sysceil ||

261 (cmp_preempt_level(&t->sched_param,

current_sysceil) > 0))

262 #endif // CONFIG_RTL_SRP

263 new_task = t;

264 }

line 257 decide whether the process is blocked,
line 258 select the task with highest priority. we
don’t care about the rest lines, which is resource stor-
age style related.
the cmp prio function:

4

51 static inline int cmp_prio(pthread_t A,

pthread_t B)

52 {

53 #ifdef CONFIG_RTL_SCHED_EDF

54 register int tmp;

55 if ((tmp= (A->sched_param).sched_priority -

B->sched_param).sched_priority))

56 return tmp;

57 else

58 return ((B->current_deadline) >

(A->current_deadline));

59 #else

60 return (A->sched_param).sched_priority >

(B->sched_param).sched_priority;

61 \#endif

62 \}

line 53 to 59 EDF related, we will discuss it next
section. considering line 60, if the return value is 0,
then the task with highest priority will be selected ,
but context switch would not perform immediately.
Scheduler will check the clock mode first, if clock
mode is ONESHORT, scheduler will reset the hard-
ware timer to issue interrupt at a specified moment,
and then switch the context.

5.4 Earliest Deadline First algorithm

5.4.1 EDF algorithm

EDF schedule algorithm is based on dynamic prior-
ity. System assign a priority for each task according
to the Deadline of the task dynamically, Task with
earliest deadline will assigned highest priority[9]. In
order to schedule correctly, certain preemption must
be satisfied:

C1

T1

+
C2

T2

+ ... +
Cn

Tn
≤ 1

n is the total task number in the SystemCi(i ≤
n) stands for the longest execution time of task i,
Ti(i ≤ n) stands for the cycle of task i.

Take an example, task T1, T2, T3, cycle:
P1= 11s, P2=10s, P3=12s, execution time C1=4s,
C2=5s, C3=5s. At moment t=0, each Deadline
is: D1=P1-C1=7s, D2=P2-C2=5s, D3=P3-C3=10s,
D2 < D1 < D3, so priority of task T2 is higher
than T1 and T3, T2 will execute first. After task
T2 finished, namely the moment t=4s, Deadline of
each task is: D1=D1-t1=3s, D2=D2+ P2-C2=14s,
D3=D3-t1=6s, now D1 < D3 < D2, so task T1 will
be scheduled next,

Figure 5 illustrate the schedule flow:

FIGURE 5: EDF Schedule Algorithm

5.4.2 EDF algorithm implementation in
RTLinux/GPL

Each thread in RTLinux/GPL holds two deadline
attribute: one is relative deadline(sched deadline),
other one is absolute deadline(current deadline).
RTLinux/GPL provide two function to set
sched deadline:

pthread_attr_setdeadline_np();

pthread_setdeadline_np();

there is no API to set the absolute dead-
line(current deadline),
function pthread make periodic np() will set the ab-
solute deadline:

p->current_deadline = start_time +

p->sched_deadline p->period;

The core of RTLinux/GPL scheduler is function
rtl schedule(), which will search all the non-blocked
thread, and the function call cmp prio will select the
task with highest priority and least absolute dead-
line(current deadline).

if ((t->pending & t->blocked) &&(!new task ||
(cmp prio(t, new task) > 0)))

static inline int cmp_prio(pthread_t A,

pthread_t B)

{

#ifdef CONFIG_RTL_SCHED_EDF

register int tmp;

if ((tmp= (A->sched_param).sched_priority -

(B->sched_param).sched_priority))

return tmp;

else

return ((B->current_deadline) >

(A->current_deadline));

#else

return (A->sched_param).sched_priority -

(B->sched_param).sched_priority;

#endif

}

System will check the mode to decide whether
need to call find preemptor() to get the preempt
time, and the use this time to set the timer

5

6 conclusion and prospection

This article focused on RTOS education, made
an expatiation about RTOS principles, and take
RTLinux/GPL as an Example, illustrate the con-
crete implementation. At present most of the con-
tent of RTOS education is about the essential Re-
alTime System principle. It will make the RTOS
learning process much easier via illustrate a typical
RTOS implementation, and will promote the devel-
opment of RTLinux/GPL indirectly. Due to time
limitation,this article only describe most basic parts,
and RealTime communication and process manage-
ment need to be addressed.

References

[1] Victor Yodaiken and Michael Barabanov,
1997, RTLinux Version TWO Design doc-
umentation about RTLinux in FSMLabs
http://www.fsmlabs.comh

[2] Der Herr Hofrat, 2002,Introducing
RTLinux/GPL, p8

[3] Daniel P.Bovert & Marco Cesati, 2005, Under-
standing the Linux Kernel, O’Reilly & Asso-
ciates,Inc., 0-596-00565-2.

[4] Yang Lifeng,Embeded RTOS Development and
Design,
http://www.51kaifa.com/zxyd/read.php?ID=107

[5] Mao Decao & Hu Ximing, 2001, Linux Kernel
Source Code Scene Analyze, Zhejiang University
Press, 7-308-02704-X/TP.209.

[6] Gary J.Nutt, 2000, Operating Systems a mod-
ern perspective, Addison Wesley Longman,Inc.,
0-201-61251-8.

[7] Amit Choudhary, Nitin Shrivastav, Ramnath
Venugopalan, 2002, Implementation of EDF,
PCEP and PIP in RT-Linux Under the guidance
of Dr,Mueller

[8] Patricia Balbastre, Ismael Ripoll, Integrated Dy-
namic Priority Scheduler for RTLinux

[9] Chu Fenmin, Dai ShenghuaStudy of RTLinux
Scheduling Policy,MicroComputer Informa-

tion, 2003, Issue 11.

6

