
Towards Modular Security-conscious Virtual Machines

Steffen Liebergeld, Michael Peter

Technische Universität Berlin

Deutsche Telekom Laboratories

Security in Telecommunications

{steffen, peter}@sec.t-labs.tu-berlin.de

Adam Lackorzynski

Technische Universität Dresden

Department of Computer Science

Operating Systems Group

adam@os.inf.tu-dresden.de

Abstract

Many system-level concerns such as security and support for real-time workloads are hard to address
in existing systems, especially if one of the main platform assets is backward compatibility. Apart from
many other applications, virtualization has proven capable in running legacy software. If done right, it
may relieve systems developers from the need to stay backward compatible and allows them to introduce

more intrusive architectural changes.
Aside from their merits, virtual machines (VMs) also introduce additional complexity into the software

stack, which enlarges the attack surface and is detrimental to security goals. In this paper, we argue that
security can indeed be improved by using virtual machines if their construction follows the principle of
incremental complexity growth. That is, functionality should only be included in the trusted computing
base of a component if the benefits due to its utility outgrow the drawbacks due to the larger risk for
introduced bugs and errors. Specifically, we apply that principle to the virtual machine monitor (VMM),
a critical component needed to run VMs.

The contribution of this paper is the demonstration that such a security-oriented architecture can be
implemented efficiently on top of a real-time capable microkernel. We demonstrate that high throughput
and good real-time performance are achievable on one system.

1 Introduction

The size of contemporary commodity operating
systems such as Linux, makes it hard to evolve
their system architecture and to add new features
because changes in core components affect too
many other parts. For example, the replacement
of the access-control list based security schemes,
which are entangled with the file API, with
capabilities has often been fancied, yet has never
materialized. Backward-compatible extensions are
plagued with substantial complexity. For example,
much effort has been expended to improve the real-
time characteristics of the Linux kernel, still these
changes have not found their way into the mainline
kernel yet.

Microkernel-based systems instead open up
the opportunity to evolve a system architecture
gradually: In monolithic systems, core components
reside inside the operating system kernel, and often
have complex interdependencies. In a microkernel-

based system, these components run at user-level,
and all communication is done explicitly via inter-
process communication (IPC). We believe that this
leads to well defined interfaces, and less complex
component interdependencies. Obviously, a well-
structured system is more amendable to system
evolution.

Architecturally, user-level placement is also
preferable because isolation is enforced in hardware
with the use of address spaces. This allows a system
of small components to be composed in such a way
that for each component the amount of code that
has to be trusted is minimized [7]. But even if
fine-grained decomposition is not outright possible,
the overall security properties of a system can be
improved even if legacy components are not modified
but certain pattern of interactions are imposed [10].

1

1.1 Backward Compatibility

A realistic assessment of the dynamics that govern
the development of software yields the conclusion
that no new system can afford not to use commodity
software. Porting each application to a new
operating system is laborious and many application
developers will not keep pace. For innovative
systems, the lack of applications is a serious
drawback. An alternative approach is to port whole
operating systems. Although neither porting an
operating system to, say, a microkernel is a non-
trivial undertaking nor is the development of a
virtual machine, it comes with the advantage that
no modifications to a possibly large number of
applications are necessary.

In the past, many commodity architectures
did not meet the requirements for efficient system
virtualization [19] with IA32 being the most
prominent example [20]. As a result, the
encapsulation of operating systems did either
require guest adaptions [15][1][4] or introduce the
substantial complexity of binary rewriting [2]. The
advent of virtualization extensions in commodity
processors facilitates VMs that neither require
guest changes nor are stricken with overly complex
implementations.

1.2 Complexity

One of the often cited merits of VMs is a new
level of isolation, which is guaranteed by the
virtualization infrastructure. Obviously, as more
workload has been migrated into virtual machines,
the virtualization infrastructure became a new
attack vector. We observe, that current virtual
machine monitors (VMMs) such as Xen are often
prone to attacks [13][25]. We attribute this
to two shortcomings in their monolithic system
architecture. First, whenever new features are
introduced, the complexity of the virtual VMM
increases. Given that there is no means of isolation
between VMM components, these new features also
increase the likelyhood of critical vulnerabilities.
Secondly, in these systems one VMM drives many
VMs. If the VMM is compromised, all of its VMs
have fallen prey to the attacker.

We instead lift the VMM on a microkernel with
its reliable isolation mechanisms. By making the
relation between VMM and VM configurable, we
make the risks introduced by running a virtualized
workload manageable. Each user can settle on a

solution on a per use case basis that best meets
his specific requirement regarding functionality and
security. If a machine is to host multiple workloads,
then these decisions can be made independently.

In this paper, we make the case for specialized
VMMs suiting a particular use case. A security-
concerned guest is likely to accept kernel modifi-
cations in return for a smaller attack surface of
its supporting infrastructure. That requirement
is met by a small VMM called Karma1, which
favors small size over extensive functionality. To
that end it makes systematic use of device para-
virtualization. The price for these feats is a non-
backward-compatible machine interface.

In a second step we use the para-virtualized
system to leverage an existing and widely used
VMM that excels with faithful virtualization. We
call this approach staged virtualization. With this
technology we support a much wider range of guests
while delegating the effort of implementing and
maintaining faithful virtualization. Encapsulating
the VMM has the advantage that it can be kept out
of the TCB of secure applications to a large extend.
This compares favorably to the original setup were
sizeable parts were implemented as kernel module for
performance reasons.

1.3 Outline

The paper is structured as follows: Section 2 starts
with briefly revisiting the challenges that have to be
overcome to run an operating system encapsulated
and how virtualization aids that goal. Before
presenting the VMM’s design in Section 3, we derive
our design goals from general microkernel principles.
Afterwards, we shortly discuss the implementation of
our VMM (Section 4). In Section 5 we discuss how
staged virtualization is implemented. Our solution
is evaluated in Section 6. Related work is discussed
in Section 7.

2 Background

Multiserver systems built on top of microkernels have
long been acknowledged as the architecture of choice
for building secure systems because they foster the
principle of least authority at system level. Briefly,
the underlying idea is to place functionality that
has accumulated in monolithic kernels into dedicated
protection domains. A crash in the network stack,
for example, which would have been fatal before, is

1Karma is the concept of ”action” or ”deed”, understood as that which causes the entire cycle of cause and effect.

2

isolated and becomes survivable [9][24].

Although such a multiserver system seems to be
the ideal solution to a range of problems, we admit
that implementing such a system from scratch and
bringing it to a state that matches the functionality
of today’s commodity systems is not feasible. We
argue that we can leverage the functionality of
commodity operating systems while retaining the
security and safety properties of the microkernel
system, by running them in an isolated container.

2.1 Operating System Rehosting

As illustrated in Figure 1 (a), today’s commodity
operating systems employ two CPU modes2, the
most privileged mode for the kernel (kernel mode),
and the least privileged mode for its applications
(user mode). Porting such an operating system on
a microkernel requires an additional privilege level
that allows the microkernel to control the commodity
kernel while retaining its structure: kernel and user
mode (Figure 1 (c)).

As common-off-the-shelf hardware like x86 does
not support such an additional privilege level,
the port of a commodity kernel requires intrusive
modifications: Its applications have to be mapped
to microkernel tasks, and the kernel itself has to be
deprivileged and run in its own address space [8].

Figure 1 (b) illustrates that architecture. The
cost for invoking a kernel service grow from one
state transition to two state transitions and a context
switch (see Figure 1 (a)). While the increased
number of state transitions is a performance
impediment by itself, the induced secondary costs
such as the increased TLB footprint carry even more
weight. The repercussions depend on the workload
and range from negligible to severe.

2.2 Virtualization

The rather intrusive operating system rehosting
laid out above was only necessary because many
widespread instruction set architectures are not
efficiently virtualizable. For x86 this changed with
the recent introduction of virtualization extensions
(AMD-V [3] for AMD and VT-x [11] for Intel).
A virtual machine comes with the advantage that

the guest kernel does not need modifications. It is
provided with a virtual CPU, which behaves like a
physical one3. The virtualization extensions allow
the host to control the execution of the guest, and
thereby enforce its own scheduling decisions and
memory management.

user environment

kernel environment

virtual machine

a) OS directly on h/w

privileged

unprivileged

host

privileged

host

unprivileged

b) OS on microkernel

hypervisor

kernel microkernel

kernel

c) OS in virtual machine

guest

privileged

guest

unprivileged

privilege

transition

context

switch

FIGURE 1: A system running directly on
hardware, on top of a microkernel and inside
a virtual machine.

In the microkernel scenario, a VM not only
elliminates the need to adapt commodity oper-
ating systems to a completely different execution
environment, it also yields better performance
compared to rehosting [18]. When a guest executes
in a VM (Figure 1 (c)), its system activities
such as state transitions and page table updates
can run directly on hardware without involving
a microkernel4. Contrary to operating system
rehosting, this avoids additional state transitions and
their induced overhead (TLB misses).

2.3 Terminology

After years of inconsistent use, the meaning of some
terms has become blurry. To avoid further confusion,
we will now define our notion.

A hypervisor enforces isolation, that is it
implements protection domains, VMs being one
flavor of them. For doing so, it needs to run
in the most privileged CPU execution mode. A

2Even though some processors offer more privilege levels, these are often quite specialized and of little value for general

purpose operating systems. For example, two of the four rings of the IA32 ISA are only meaningful when used with the arcane

segmentation which renders them useless for many modern operating systems.
3The behavioral equivalence does not cover the virtualization extensions themselves. Any attempt to use them will be

intercepted.
4The processor needs to feature nested paging.

3

microkernel applies the principle of minimality to the
portion of software running in the most privileged
execution mode. We understand microkernel and
hypervisor complementary. Hypervisor implies a
function whereas microkernel denotes a particular
design principle. As such, a microkernel can assume
the role of a hypervisor, or conversely, a hypervisor
can be implemented as microkernel.

A virtual machine monitor provides VMs with
functionality beyond CPU and memory virtualiza-
tion, which is the duty of the hypervisor. Typically,
the VMM supplies a VM with (virtual) devices and
coordinates its execution. Contrary to a hypervisor,
which always requires maximal CPU privileges, a
VMM can be either part of the kernel or implemented
as a user task.

We distinguish between two forms of virtu-
alization: In full or faithful virtualization, a
guest is presented with a complete duplicate of a
physical machine. In para-virtualization instead,
the VM presents a modified machine interface.
Under faithful virtualization, a VM can run
unmodified guest operating systems, whereas para-
virtualization requires modifications to the guest
operating systems.

In para-virtualization, a guest may invoke
services on the VMM. Such service invokations are
called hypercalls and can be initiated via a special
vmmcall instruction. They work similar to system
calls in traditional operating systems.

3 Design

Before we present our design, we state which
implications of hosting a VM are tolerable and
which are not. First, hosting VMs should not put
unrelated secure applications that run on the same
machine at risk. Second, a guest that can withstand
attacks aimed at itself shall not become vulnerable
to an attacker who instead redirects his efforts on
the VM infrastructure. Accordingly, the hypervisor
and VMM should exhibit the same invulnerability
against external attacks as physical hardware. Yet,
we do not strive to counteract attacks that the guest
was not able to thwart itself when running on the
physical machine.

Figure 2 provides an overview of our design.

3.1 Host System

With host system we mean all parts of the system
except for the VM and its supporting VMM.
Invariably being part of the trusted computing base
(TCB) of any application, the host kernel has special
requirements in terms of security. It should be small
so that inspection of its implementation can achieve
a high degree of thoroughness. Therefore, we opted
for a microkernel. Virtual machines have to be
supported as a type of protection domain, which
lets the microkernel assume the role of a hypervisor.
As shown in previous research [18], VM hosting
capabilities can be added in an non-intrusive way,
so that security properties are not compromised.
To implement the principle of least authority at
system level, it is useful to have object-capabilities
at the kernel level at hand [16]. Fiasco.OC [14],
the microkernel we chose, features capability-based
access control.

VM

VM Task

virtual

IRQ

IPC

VMM

hypercall

Secure Infrastructure

IPC MMIO

IRQ

FIGURE 2: Architecture of the Karma
VMM.

Contrary to monolithic kernels, device drivers
run on top of the microkernel at user level. As any
other task, they are encapsulated in address spaces.
Endowed with the hardware access needed for
device communication, they offer services of higher
abstractions to the layers above. The exact nature
of these services is device specific and may include

4

advanced features, e.g. bandwidth reservation.
As long as IO-MMUs are not in widespread use,
DMA operations are not contained by address space
boundaries. As such, the device manager of a DMA-
capable device has to be counted to the system-wide
TCB.

We make two assumptions regarding the security
properties of our hosting system: First, the
microkernel enforces protection boundaries, in
particular those of virtual machines. If there are
agents that are able to circumvent these boundaries5,
then they are assumed to be trustworthy. Second,
the system is resilient against peer attacks. A
peer attack is an attempt to trick a peer, which
provides a service, into an activity that violates
the service contract. Usually such attacks draw on
implementation flaws, e.g. missing argument checks.
Such a rather strong assumption is warranted by the
scope of this paper, which is on the security impact
of VMs on their accommodating host system.

3.2 Virtual Machine Monitor

The architectural sketch gives a hint as to the role
of the VMM. The two sides it interacts with–the
VM above and the secure infrastructure below–use
different means of communication. It falls to the
VMM to serve as a protocol translator.

In our design, VMMs are implemented as user-
level protection domains (tasks). They do not
hold any special privileges since sensitive operations
like switching the CPU into guest mode (world
switch) are provided by the hypervisor. As a task,
each VMM is subject to the regular capability-
based communication control and the secure resource
delegation mechanisms. Accordingly, the VMM
does not pose a novel threat to other protection
domains in the system as these have to withstand
local attackers anyway. The actual VM is the least
privileged component in the stack. It is under full
control of the VMM which provides it with memory
and takes care of the interaction with the other parts
of the system.

CPU and memory virtualization are handled by
CPU extensions. However, a VM also needs a range
of devices, from platform devices - such as interrupt
controllers and timers - to peripheral devices like
network cards (NICs) and hard disks. This raises the
question how such devices are to be implemented.

The interface used for device communication is
geared towards hardware implementations. A logical

request is split into a sequence of simple operations
such as writing an individual device register. Such
an interface is unfavorable in VMs as each individual
device access normally causes a costly VM exit. In
faithful virtualization, the VMM must decode the
semantic content of an operation, e.g. the value that
was to be written and the address that it was to be
written to, before it feeds these values into its device
model.

To mitigate that problem, we introduced a
higher-level interface between the VM and the VMM.
In many cases, the device drivers implementing the
custom interface have a much lower complexity than
their counterparts implementing the device interface.
For example, a sequence of low level operations such
as register access for a particular disk controller to
request a block on a logical volume is replaced with
one service invocation to the VMM (hypercall).

Along that line of device para-virtualization, we
further reduced the Karma VMM’s size by omitting
legacy functionality such as 16bit code and the BIOS
emulation for early bootstrapping stages.

As para-virtualization requires adaptions to the
guest operating system, the number of operating
systems suited to run on the Karma VMM is limited.
But even where source modifications are possible,
it may be desirable to run guests unmodified, for
example to avoid having to go through certification
again. We will address this need with staged
virtualization.

3.3 Attack Scenarios

The infrastructure needed for VMs adds new targets
that an adversary can aim at. To assess the
security situation it is necessary to understand what
the risks for individual components are and which
implications arise from successful attacks.

We would like to point out that we do not discuss
the security situation of applications in a VM, which
obviously also depends on the traits and qualities
of the guest operating system in addition to the
virtualization stack. It is far beyond the scope of
this paper to examine operating systems in general.
Our suggestion for security-concerned applications is
to run as native application of a microkernel system,
which was designed with that use case in mind.

5e.g. device managers that may initiate DMA

5

3.3.1 Attacks from within the VM

Direct attacks from within the VM to break its
encapsulation are thwarted by the microkernel. By
using secure mechanisms to construct protection
domains including VMs, the kernel can always rely
on correct machine-level data structures such as
page tables. Together with specification compliant
hardware, this ensures that a VM has only access to
resources that were explicitly granted to it.

An attacker running with user privileges in the
VM might try to gain control over the guest kernel
by subverting the VMM. These efforts have little
chances of success because the VMM hardly interacts
with user level guest activities which minimizes the
chances for a flawed implementation. In particular,
a VMM does not accept device requests through
its hypercall interface if they are issued with user
privileges in the VM.

The situation is different for an attacker with
guest kernel privileges. The para-virtualization
interface is more involved which increases the odds
of implementation defects in the VMM. Still, the
best such an attacker can hope for is to subvert the
VMM thereby turning it into a local attacker. The
compromised VMM runs in a dedicated protection
domain and can only access resources in other
protection domains through capability controlled
communication channels. This access is not
problematic under the assumption that the VMM
was only granted resources that cannot be used to
affect secure applications in the first place.6 As
such, the risk for secure applications is not increased
because, as stated above, one underlying assumption
is that they can cope with such local attacks.

A malicious VM could try to gain control over
its sibling VMs by taking over the shared VMM. To
mitigate that risk, VMs that are to be separated do
not share a VMM.

3.3.2 External Attacks

An external attacker who cannot defeat a guest
directly could re-target on the VMM. Being part of
the TCB of the VMs, a VMM that is compromised
turns its VMs in as well. Fortunately, the attack
vector on the VMM is limited because all external
traffic has to pass through a device manager before
it reaches the VMM. The device managers are
responsible for secure device arbitration which may
include low level protocol processing. For example,

in the case of the NIC manager, that involves
assembling fragmented packages and implementing
NAT. The VMM itself is left with the rather simple
task of forwarding packets to the VM without
inspecting them. This can be done with a ring
buffer, the simplicity of which gives little chances for
implementation bugs.

As with VMMs defeated by its VMs, a VMM
taken over by an external attacker does not pose
a threat to secure applications running alongside as
explained above.

3.3.3 Non-mitigated Attacks

As we are only interested in the risk changes due to
the presence of a VMM, we are not concerned about
attacks that do not involve the VMM. This class
includes both internal and external attacks. The
guest faces the same threats irrespective of whether
it runs on a physical machine or in a VM.

In such a disregarded attack, a process in the
VM might try to exploit a vulnerability in the
guest kernel and gain control over sibling processes.
The VMM could counteract these threats, e.g.
by augmenting the machine model with additional
access controls for kernel data. Such techniques are
complementary to our solution and are an active field
of research [5][22][17].

4 Implementation

The functionality that eventually makes up the
virtual machine is provided by distinct parts of
the system. The Karma VMM coordinates them.
Its implementation can be roughly divided into the
following three parts: core virtualization, system
environment and peripheral devices. We will cover
each of them in the following sections.

4.1 Core Virtualization

Virtualizing the CPU and memory relies on
recent CPU extensions. The microkernel supports
protection domains–tasks in our terminology–that
can be used to manage the memory of a VM.
Any memory bound to a domain associated with a
VM is visible inside the VM as physical memory.
Unlike threads, virtual CPUs are not active entities
scheduled by the kernel. Instead, a virtual CPU

6Granting a VMM access, e.g., to page with confidential data of a secure application is considered a fault on part of the

infrastructure.

6

resumes execution whenever a thread switches to it.
During that switch, the thread provides the CPU
state, i.e. the register contents, with the memory
environment taken from the protection domain.

The center piece of a VMM is an event loop as
shown in Figure 3. Before it transfers control into
a VM, the VM thread checks for pending events.
These events may occur when device managers
signal the completion of device requests. Control is
returned from the VM to its controlling thread when
either a host interrupt occurs, the VM requests a
service from the VMM7, or a condition arises that
cannot be handled by the VM.

VM_state state;

while(vm_active){

 if (virtual_irq_pending){

 set_virq_for_injection(&state);

 }

 syscall_vm_run(&state);

 if (request_pending(&state)){

 handle_reqest(&state);

 }

}

FIGURE 3: Main event loop

The computing power of multiprocessors can
only be fully harnessed in VMs if multiple virtual
CPUs are exposed. A virtual CPU is added to a
VM by letting an additional thread execute an event
loop. If this takes place on an additional physical
CPU, the VM enjoys actual hardware concurrency.

4.2 System Environment

As we do not to support 16bit execution mode nor
a BIOS implementation, traditional boot loaders
cannot be used. Instead, we implemented the EFI
32 bit boot protocol to boot Linux directly in
protected mode. This requires setting up initial
segments, instruction and stack pointers and a data
structure providing Linux with information such as
the physical memory layout and the command line.

Some devices are not managed by device
managers but used by the microkernel itself. For
example, the platform timer is not exposed directly.
Instead, the kernel makes it accessible in the shape of
IPC timeouts. Our timer implementation employs a
thread that infinitely runs a loop wherein it blocks for
the duration of a timer tick. After each timeout, it
flags the occurrence of a timer tick. The main event
thread notices that and injects a timer interrupt into
the VM.

4.3 Peripheral Devices

In a microkernel system, the kernel itself does not
contain device drivers. Devices are managed by user-
level servers, which provide a high level message
passing interface, possibly complemented by shared
memory for efficient bulk data transfer.

An IPC interface poses a challenge to a VM
because IPC is not readily available. Instead, device
requests are forwarded to the VMM, which then
sends an IPC to the device manager on behalf of
the VM. Some device managers may employ an
RPC-style interface where the caller blocks until
the request is completed. Such a behavior is at
odds with basic operating system design rules, which
assume that peripheral device act concurrently to
the processor. In such cases, the VMM employs
dedicated helper threads, which may block without
stopping the main thread.

Given our preference for efficient para-virtualized
devices, the device virtualization follows a general
pattern; tiny Linux stub drivers communicate via
a streamlined shared-memory-based protocol with
driver backends implemented in the VMM. The
driver backends implement IPC based communica-
tion channels to L4 services.

Currently, the following devices are supported:
graphics, network, and serial line communication.

The only exception is the hard disk, as at
the time of this writing no L4 device manager for
block devices is available. Instead, we implemented
direct pass-through hard disk access. This is only
a temporary solution as the hard disk pass-through
uses DMA and thus completely evades our security
architecture. It also limits hard disk access to one
VM at a time.

4.4 Complexity and Size

One way of estimating the complexity of an
application is to look at the amount of lines of source
code. By this criterion, our VMM is of very low
complexity as it comprises only about 3800 SLOC.
The patch to Linux is about 2800 SLOC, with 2300
SLOC being the stub drivers.

The small source size translates into a small
resource footprint at run-time. Together with some
support libraries, the actual memory footprint of
the VMM amounts to 284kB per instance. These
demands compare very well to previous work [18].
The approach chosen there–running a VMM with its

7A special vmmcall instruction is included for that purpose.

7

own Linux-based operating system–is estimated to
have a lower resource bound of 16MB.

5 Staged Virtualization

Our low-complexity Karma VMM can only run para-
virtualized operating systems. License restrictions
or lacking access to the source code make para-
virtualization of some operating systems infeasible.
However, with some binary-only systems being wide-
spread, it would be desirable to accommodate such
systems as well and thereby support their large
application base.

Since implementing faithful virtualization from
scratch is a large effort that takes many man-years,
we chose to re-use an existing VMM. Such a VMM
usually makes use of operating system services such
as file system access or a graphical user interface.
Moreover, a VMM assumes direct control over the
hardware which is necessary to initiate a world
switch into a VM and exercise control over physical
memory.

For our system, we settled on KVM [12],
a project that enhances Linux with hypervisor
functionality and leverages Qemu for device virtu-
alization. It is backed by a vibrant community
and already supports a number of guest operating
systems. We placed KVM together with its
infrastructure (Linux and Qemu) in a VM managed
by our low-complexity Karma VMM. We call a VM
that is controlled by the Karma VMM a first-stage
VM, and consequently, we call a VM run by KVM
a second-stage VM. Note, that a second-stage VM is
also managed by our light-weight VMM to a certain
degree. The difference between them is that the
light-weight VMM provides the (para-virtualized)
devices to first-stage VMs, whereas this duty is
assumed by first-stage VMs for second stage ones.

Since–for security reasons–privileged instruc-
tions are the preserve of the microkernel, the VMM
cannot directly initiate a world switch but has to
invoke a microkernel operation. We replaced the
privileged vmrun in the KVM kernel module with
requests to the light-weight VMM, who, in turn,
invokes a microkernel operation. The same goes
for memory operations (map and unmap). An
illustration of this setup can be seen in Figure 4.

When Qemu instructs the KVM kernel module
to initiate a world switch (1), KVM issues a
hypercall (2). The VMM then instructs the
microkernel to actually initiate the world switch (3).
Now the execution runs inside the second-stage

VM. On each fault, for example due to the guest
commanding a device, control falls back at the
VMM (4). The VMM will then give control back to
the first-stage VM kernel (5) and finally to Qemu (6).

primary VM

VM Task

5

Karma VMM

FIGURE 4: Staged Virtualization.

To a certain degree, this setup mimics the setup
of Xen, with the first-stage VM being the Dom0
and the second-stage VM being a DomU. Similar to
Xen, we also allow the first-stage VM to drive many
second-stage VMs. The difference to Xen is, that we
can run multiple first-stage VMs on one machine and
guarantee isolation between them.

6 Evaluation

All measurements were done on an AMD Phenom
8450 triple-core processor with 2.1GHz and 512Mb
RAM. In all setups, we used Linux in version
2.6.31.5, running Debian 5.0.

The benchmarks were run on the para-
virtualized Linux for first-stage VMs. For second-
stage VMs, we made sure that the para-virtualized
Linux in the first-stage VM was idle prior to running
the benchmark inside the second-stage VM. We
compared these measurements to a benchmark run
on a native Linux that had the same configuration
as Linux in the first- and second stage VMs.

6.1 Throughput

The first benchmark consists of a shell script that
creates and destroys a fair number of processes.
It stresses the Linux virtual memory subsystem as
well as its system call interface. These operations
proved troublesome for previous rehosted operating
systems. The numbers derived from that benchmark
are shown in Table 1. Surprisingly, on a single CPU
the benchmark ran faster on the para-virtualized
Linux than on native Linux. We ascribe that to
scheduling anomalies.

8

Next we measured a compile run of a Linux
2.6.30.4 kernel with standard configuration for the
x86 platform. The kernel compilation was done with
warm caches, and the measured run-times can be
found in Table 2.

Native Linux First-stage VM
1 CPU 947s 876s
2 CPUs 459s 455s
3 CPUs 307s 357s

TABLE 1: Synthetic system benchmark

Native Linux First-stage VM
1 CPU 619s 620s
2 CPUs 307s 316s
3 CPUs 223s 234s

TABLE 2: Run-time of kernel compilation

The kernel compilation was also used to evaluate
the performance of the second-stage VMs shown in
Table 3. In comparison to an unmodified KVM,
the second-stage VM performed with negligible
performance degradation.

In both benchmarks, the performance gaps
widens as the number of CPUs increases. In
the second-stage VM this effect is even more
pronounced. We believe that this is due to an
increased number of cross-CPU interactions that
involve APIC operations, the handling of which is
expensive. The slowdown compared to native Linux
is due to the KVM setup. As both the native KVM
and the second-stage VM run the same setup, both
would equally benefit from tuning.

Native KVM Second-stage VM
1 CPU 734s 746s
2 CPUs 365s 382s
3 CPUs 265s 297s

TABLE 3: Kernel compile in second-stage
VM and in native KVM

6.2 Latency

To assess the capabilities of our solution regarding
event handling, we measured latencies for the
same machine running stock Linux and L4. The
measurements on L4 were conducted with a small
test program developed for that purpose. It runs
alongside a Karma VM and uses the HPET as
external event source. We measured the system

idle and with loaded with hackbench serving as load
generator inside the VM. The results are depicted in
figure 5.

The measurements confirm the good pre-
emptibility of the Fiasco microkernel. With a
running VM, higher latencies are to be expected due
to VM entries and VM exits. The additional delays
are in the range of 5us for regular operations and
below 15us for pathological cases [21]. The measured
increases in that range under load are in line with
these previous findings.

 0.1

 1

 10

 100

 1000

 10000

 20 40 60 80 100

System idle, in us

Idle

 0.1

 1

 10

 100

 1000

 10000

 20 40 60 80 100

System with load, in us

Hackbench running

FIGURE 5: Latencies on L4.

For the Linux measurements we used the
cyclictest tool [6]. The test was run on
Linux 2.6.35 configured for full preemption
(CONFIG PREEMPT) but without the
RT PREEMPT patch applied. The results are
shown in figure 6.

 0.1

 1

 10

 100

 1000

 10000

 20 40 60 80 100

System idle, in us

Without Hackbench

 0.1

 1

 10

 100

 1000

 10000

 20 40 60 80 100

System with load, in us

With hackbench

FIGURE 6: Latencies on Linux.

Fiasco has clearly an edge over mainline Linux
regarding worst-case latencies. The simplicity of
Fiasco allows for better preemptibility. Complex

9

workloads, which come with longer non-preemptible
portions, can be encapsulated in VMs where they
have control over preemptions visible to them but do
not interfere with the system scheduler. It remains
to be seen how more preemptible versions of Linux
will fare. The RT PREEMPT line of development
shows promise to significantly cut down on worst-
case latencies.

The larger average latencies of the L4 system
under idle conditions can be attributed to the
following reasons. First, while the current version of
Fiasco supports message-signalled interrupts (MSIs)
for PCI devices, it does currently not so for the
HPET. Accordingly, its interrupts have to pass
through the IO-APIC. Second, Fiasco has to mask
the level-triggered HPET interrupt before it can
acknowledge it. That is necessary because an
unacknowledged interrupt could prevent the delivery
other pending interrupts which could give rise to
priority inversion. Masking the interrupt on the IO-
APIC takes 2.5µs alone.

7 Related Work

Various research projects aimed at running encap-
sulated operating systems efficiently on top of small
kernels.

L4Linux [8] proved that it is possible to slip
a microkernel under an operating system while
retaining acceptable performance. As the L4
microkernel interface is sufficiently different from
a CPU model, the changes to the Linux kernel
are significant. Apart from the implementation
overhead, this approach also incurs non-negligible
runtime overhead because many operations, such as
page table updates, are security sensitive and have
to be mediated by the microkernel. In contrast, the
changes on guest OSes required by Karma affect only
peripherals and leave the processor specific parts
unchanged.

Microkernels can be readily extended to feature
VMs as protection domains without losing their
design superiority. KVM-L4 [18] showed how an
existing, feature-rich VMM can be encapsulated so
that security concerned applications are not put at
risk. The drawback of this approach is, that the
VMM itself relies on a rehosted operating system,
in that case L4Linux. If used as environment to
host the VMM, L4Linux has a much larger resource
footprint than Karma. That advantage only holds
for VMs that run (first stage) guests with Karma
adaptions. Support for unmodified guests requires
two-staged virtualization. The first-stage VM is

itself a Linux which negates the size advantage over
L4Linux. The performance edge, though, remains
since Karma supports multiple processors per VM
whereas KVM-L4 only runs on uniprocessors.

Xen [4] is–in our terminology–both a hypervisor
and a virtual machine monitor. The system only
offers VMs as protection domains, which implies
some resource overhead and is detrimental to an
architecture involving many small components.

While NOVA [23] shares many of the goals
regarding a small TCB and capability-based security
mechanisms, it disregards support for real-time
workloads. NOVA relies on virtualization extensions
for legacy operating system encapsulation, whereas it
is optional to make use of virtualization extensions to
run legacy operating systems on Fiasco. As such, a
developer may run a performance-sensitive VM with
virtualization extensions along with a realtime-VM
not using them. As the latter is made up of native
tasks, it enjoys lower event latencies. Furthermore
we believe that the requirements on VMMs are too
diverse to be addressed by a single implementation.
Without a scalable approach, a VMM is prone to
either lack functionality or grow to a size that
severely calls its trustworthiness into question.

8 Conclusion

In this paper, we presented a two-pronged approach
to run legacy environments on top of a microkernel-
based system. First, we created a well-performing,
low-complexity VMM that establishes a VM to run
a slightly modified Linux. We use these light-weight
VMs to employ a feature-rich legacy VMM, which in
turn provides backward-compatible VMs.

Our evaluation showed that the performance
degradation incurred by our light-weight Karma
VMM is small enough to be non-noticeable for most
real-world workloads. The second-stage VM with
faithful virtualization matches the performance of
the VMM it is derived from.

Fiasco also shows promise with regard to
worst-case event handling latencies. Its good
preemptibility can be retained in the presence of
virtual machines. It remains to be seen if system
developer are willing to dispense with a developed
ecosystem for a simpler system architecture.

10

9 Acknowledgements

Our thanks is due to Björn Döbel who diligently
fixed any bug in the network server that was awoken
during our measurements. Further, we are grateful
to Jean Wolter who perseveringly took part in a
race of him finding fault with inconsistencies and us
ironing them out.

We also want to thank our colleagues Janis Dani-
sevskis and Matthias Lange, who are contributing to
the development of the Karma VMM.

We would also like to thank the European
Commission for their Research Programme FP7
supporting us through the projects eMuCo8 and
TECOM9.

References

[1] L4Linux - running Linux on top of L4. http:

//os.inf.tu-dresden.de/L4/LinuxOnL4/.

[2] K. Adams and O. Agesen. A comparison
of software and hardware techniques for x86
virtualization. In ASPLOS-XII: Proceedings of
the 12th international conference on Architec-
tural support for programming languages and
operating systems, pages 2–13, New York, NY,
USA, 2006. ACM.

[3] AMD. AMD64 Architecture Programmer’s
Manual Volume 2: System Programming.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization,
2003.

[5] P. Chen and B. Noble. When virtual is better
than real. In hotos, page 0133. Published by the
IEEE Computer Society, 2001.

[6] cyclictest. URL:https://rt.wiki.kernel.org/
index.php/Cyclictest.

[7] H. Härtig, M. Hohmuth, N. Feske, C. Helmuth,
A. Lackorzynski, F. Mehnert, and M. Peter. The
Nizza Secure-System Architecture. In In IEEE
CollaborateCom 2005, 2005.

[8] H. Härtig, M. Hohmuth, J. Liedtke,
S. Schönberg, and J. Wolter. The performance
of µ-kernel-based systems. In Proceedings of
the 16th ACM Symposium on Operating System

Principles (SOSP), pages 66–77, Saint-Malo,
France, Oct. 1997.

[9] J. N. Herder, D. C. van Moolenbroek,
R. Appuswamy, B. Wu, B. Gras, and A. S.
Tanenbaum. Dealing with driver failures in the
storage stack. Dependable Computing, Latin-
American Symposium on, 0, 2009.

[10] M. Hohmuth, M. Peter, H. Härtig, and J. S.
Shapiro. Reducing TCB size by using untrusted
components: small kernels versus virtual-
machine monitors. In EW 11: Proceedings of
the 11th workshop on ACM SIGOPS European
workshop, page 22, New York, NY, USA, 2004.
ACM.

[11] Intel. Intel R© 64 and IA-32 Architectures Soft-
ware Developer’s Manual Volume 3B: System
Programming Guide.

[12] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. kvm: the Linux virtual machine
monitor. In Linux Symposium, 2007.

[13] K. Kortchinsky. Cloudburst – Hacking 3D and
Breaking out of VMware. Black Hat USA, 2009.

[14] A. Lackorzynski and A. Warg. Taming
Subsystems: Capabilities as Universal Resource
Access Control in L4. In IIES ’09: Proceedings
of the Second Workshop on Isolation and
Integration in Embedded Systems, pages 25–30,
Nuremberg, Germany, 2009. ACM.

[15] B. Leslie, C. van Schaik, and G. Heiser.
Wombat: A portable user-mode Linux for
embedded systems. In Proceedings of the 6th
Linux. Conf. Au, Canberra, 2005.

[16] M. Miller, K.-P. Yee, J. Shapiro, and C. Inc.
Capability Myths Demolished. Technical report,
2003.

[17] E. B. Nightingale, D. Peek, P. M. Chen,
and J. Flinn. Parallelizing security checks
on commodity hardware. In ASPLOS XIII:
Proceedings of the 13th international conference
on Architectural support for programming lan-
guages and operating systems, pages 308–318,
New York, NY, USA, 2008. ACM.

[18] M. Peter, H. Schild, A. Lackorzynski, and
A. Warg. Virtual machines jailed: virtualization
in systems with small trusted computing bases.
In VTDS ’09: Proceedings of the 1st EuroSys
Workshop on Virtualization Technology for

8http://www.emuco.eu/
9http://www.tecom-project.eu/

11

Dependable Systems, pages 18–23, Nuremberg,
Germany, 2009. ACM.

[19] G. J. Popek and R. P. Goldberg. Formal
requirements for virtualizable third generation
architectures. Commun. ACM, 17(7):412–421,
1974.

[20] J. S. Robin and C. E. Irvine. Analysis
of the Intel Pentium’s ability to support a
secure virtual machine monitor. In SSYM’00:
Proceedings of the 9th conference on USENIX
Security Symposium, pages 10–10, Berkeley,
CA, USA, 2000. USENIX Association.

[21] H. Schild, A. Lackorzynski, and A. Warg. Faith-
ful Virtualization on a Real-Time Operating
System. In Proceedings of the Eleventh Real-
Time Linux Workshop, pages 237–243, Dresden,
Germany, 2009.

[22] A. Seshadri, M. Luk, N. Qu, and A. Perrig.
Secvisor: a tiny hypervisor to provide lifetime

kernel code integrity for commodity oses. In
SOSP ’07: Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems
principles, pages 335–350, New York, NY, USA,
2007. ACM.

[23] U. Steinberg and B. Kauer. Nova: a
microhypervisor-based secure virtualization ar-
chitecture. In EuroSys ’10: Proceedings of the
5th European conference on Computer systems,
pages 209–222, New York, NY, USA, 2010.
ACM.

[24] D. Vogt, B. Döbel, and A. Lackorzynski. Stay
strong, stay safe: Enhancing reliability of
a secure operating system. In Proceedings
of the Workshop on Isolation and Integration
for Dependable Systems (IIDS 2010), Paris,
France, April 2010, New York, NY, USA, 2010.
ACM.

[25] R. Wojtczuk. Subverting the Xen hypervisor,
2008.

12

