
Demystifiying ELF
Armijn Hemel, MSc - Tjaldur Software

Goverance Solutions

COOL December 2024 2

What is ELF?

Executable and Linkable Format
● origin in System V Unix
● default format for executables on Linux since mid-1990s

● but used as a container format by some (example: Android Dex)

● allows both static and dynamic linking

COOL December 2024 3

Why analyse ELF files?

two main use cases for ELF analysis:
● provenance: where did this binary file come from?
● linking: what is the interaction with other components?

● interestingly, roughly the same information can be used for this!
● a full analysis walkthrough could take weeks. This will be the very

quick condensed version.

COOL December 2024 4

ELF file format structure

header, followed by:
● (optional) program headers
● segments/sections
● (optional) section headers

● just an empty header would be a valid ELF file (but not very
useful)

COOL December 2024 5

ELF in a picture (from Wikipedia)

...

.data

.rodata

.text

Program header table

ELF header

Section header table

⎧
⎪
⎨
⎪
⎩

⎧
⎪
⎪
⎨
⎪
⎪
⎩

COOL December 2024 6

Program headers vs section headers

ELF provides two ways to access data:
● program headers point to segments
● section headers point to sections

● when executing the operating system (example: Linux) only uses
the program headers

● for analysis the sections are much more useful
● fiddling with program headers/section headers is sometimes used

as a form of obfuscation and sometimes won't match!

COOL December 2024 7

Accessing section information

many tools available for accessing section information:
● readelf (GNU binutils)
● pyelftools
● Kaitai Struct

● in this talk readelf is used
● readelf does a lot of the heavy lifting

COOL December 2024 8

readelf: useful switches

-W : wide output
● -h : display header
● -S : display sections
● -s : display symbols
● -a : display everything
● -p : display strings of a specific section

COOL December 2024 9

Demo: poking around a few files

let's look at a few files using readelf
● /bin/ls
● /bin/vim

● and look at a few things:
● ELF header
● section information
● symbols

COOL December 2024 10

Section names

ELF specification reserves several section names
● .interp
● .dynsym
● .shstrtab
● .dynamic
● etcetera

● developers are free to add other sections with non-reserved
names

COOL December 2024 11

Section types

Sections also have a type:
● NOTE : ELF note sections
● STRTAB : string sections
● VERSYM / VERNEED : symbol versioning information
● PROGBITS : program specific information (not defined by the

specification)
● and so on

COOL December 2024 12

Interesting NOTE sections

(recent) Fedora stores provenance
● .note.package contains JSON with package information:
● Example:

{"type":"rpm","name":"vim","version":"9.1.825-
1.fc39","architecture":"x86_64","osCpe":"cpe:/
o:fedoraproject:fedora:39"}

● this is a standard from systemd:
● https://systemd.io/ELF_PACKAGE_METADATA/

https://systemd.io/ELF_PACKAGE_METADATA/

COOL December 2024 13

Interesting PROGBITS sections (1)

Example: Qt

$ readelf -WS /usr/lib64/libQt5Core.so.5.15.14 | grep qt

 [19] .qtmimedatabase PROGBITS [...]
● this section contains a compressed copy of the MIME database.

Old versions of Qt use the (GPL licensed) MIME database from
freedesktop.org

COOL December 2024 14

Interesting PROGBITS sections (2)

Sony ESSTRA is a new project
● Enhancing Software Supply Chain Transparency
● GCC plugin that stores names of used files as YAML
● YAML stored in an ELF section
● new project, still under development
● https://github.com/sony/esstra/

https://github.com/sony/esstra/

COOL December 2024 15

Interesting PROGBITS sections (3)

Go stores a ton of information in ELF sections
● line table, mapping to source code files at line number
● symbol table
● etc.

COOL December 2024 16

Crazy ELF stuff

Android: uses ELF to wrap Dex bytecode
● AppImage version 2 puts its own magic bytes in the ELF header

overwriting standard headers
● Go is funky:

● breaks ASCII requirements for symbols, by using UTF-8 characters

● ELF specifications should sometimes be treated as a “suggestion”

COOL December 2024 17

Detecting provenance in more detail

information already available:
● file names (tend to be mostly unique, as most Linux systems are a

single namespace)
● several sections (see before)

● but this is not granular enough. Instead use:
● symbols (functions, variables, etc.)
● strings

COOL December 2024 18

Why use symbols?

symbols are unique enough
● (unscientific) research:

● download recent Debian
● look at (defined) functions and variables in all ELF files

● result:
● vast majority of symbols are unique to a single package
● often unique to a single file
● Linux tends to be a single namespace because ELF linking is based on

symbols

COOL December 2024 19

Why use strings?

many strings survive compilation and stripping:
● debug strings
● output strings

● platform agnostic
● very specific to programs

● strings present the Linux kernel is very unlikely to end up in desktop
applications, except for things like shared dependencies like
compression

COOL December 2024 20

Simple method for fingerprinting

1 extract symbols and strings from source code

2 extract symbols and strings from binaries

3 match!

COOL December 2024 21

Extracting symbols and strings from source code

no fancy tools or parsers needed!
● for symbols:

● ctags
● pygmars

● for strings:
● xgettext

COOL December 2024 22

Extracting symbols from ELF binaries (1)

process output from readelf
● parse ELF file:

● pyelftools
● Kaitai Struct

● readelf works well enough for small manual inspection, other
methods for programmatically processing large amounts of files

● interesting from the symbol table: FUNC and OBJECT

COOL December 2024 23

Extracting symbols from ELF binaries (2)

$ readelf -Ws /bin/bash | egrep -e 'FUNC|OBJECT' | grep -v UND | head -n 4

 234: 00000000000ebd10 1029 FUNC GLOBAL DEFAULT 16
rl_old_menu_complete

 235: 000000000005d110 25 FUNC GLOBAL DEFAULT 16
maybe_make_export_env

 236: 00000000000a5100 35 FUNC GLOBAL DEFAULT 16 initialize_shell_builtins

 237: 00000000000d14a0 39 FUNC GLOBAL DEFAULT 16 extglob_pattern_p

COOL December 2024 24

Extracting symbols from ELF binaries (3)

If you are lucky:
● unstripped binaries can contain even more information

● debug symbols
● file names

COOL December 2024 25

Extracting strings from ELF files

strings (GNU binutils) works well, but:
● for best success limit it to specific PROGBITS sections

● .rodata, .rodata.str1.1, .rodata.str1.4, .rodata.str1.8, etc.

● no guarantee for success, as strings could instead be stored as a trie!
● strings will not (by default) catch “wide” strings
● still: this is good enough!

COOL December 2024 26

Fingerprinting caveats

Fingerprinting doesn't always work or catch all data:
● there has to be enough unique data to work with!
● statically linked ELF files, with no unique strings, are a challenge
● should be used as a starting point for further research, not a definitive

answer

COOL December 2024 27

Tool support for fingerprinting

Binary Analysis Next Generation (BANG):
● main analysis program extracts data from binaries
● helper scripts to:

● extract data from source code
● generate YARA scripts from data extracted from source code and binaries

● soon: integration with AboutCode's “purl2sym” service

COOL December 2024 28

ELF dynamic linking analysis

● knowing how ELF files interact is important:
● GPL & LGPL compliance
● “derivative works”

● a tool like ldd can help, but:
● uses the dynamic linker configuration of the host system
● doesn't allow search

● so, let's look at a better method

COOL December 2024 29

ELF dynamic linker

● kernel loads ELF file and looks for the interpreter (dynamic
linker):

$ readelf -Wa /bin/ls | grep interpreter

 [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

● dynamic linker loads configuration (typically /etc/ld.so.conf and
friends) to find library search path

● ELF file is queried for declared shared libraries that are needed,
recursively

● symbols that are needed are searched in the
shared libraries and resolved, recursively

COOL December 2024 30

ELF dependencies

$ readelf -Wa /bin/ls | grep NEEDED

 0x0000000000000001 (NEEDED) Shared library:
[libselinux.so.1]

 0x0000000000000001 (NEEDED) Shared library:
[libcap.so.2]

 0x0000000000000001 (NEEDED) Shared library:
[libc.so.6]

COOL December 2024 31

Finding ELF symbols

$ readelf -Ws /bin/ls | egrep -e "FUNC|OBJECT" | grep UND | head -n 4

 1: 0000000000000000 0 FUNC GLOBAL DEFAULT UND
__ctype_toupper_loc@GLIBC_2.3 (2)

 2: 0000000000000000 0 FUNC GLOBAL DEFAULT UND
getenv@GLIBC_2.2.5 (3)

 3: 0000000000000000 0 FUNC GLOBAL DEFAULT UND cap_to_text

 4: 0000000000000000 0 OBJECT GLOBAL DEFAULT UND
__progname@GLIBC_2.2.5 (3)

COOL December 2024 32

ELF symbol versioning

● some ELF libraries provide versioning:
● attempt at API
● can be used for stricter fingerprinting and linking analysis

● not universally implemented, but some important libraries use it:
● glibc
● Qt
● ALSA
● PAM

COOL December 2024 33

ELF linking graph

● result is ELF linking graph that could be used for:
● fine grained querying of symbols
● visual representation of link dependencies
● possibly detect cruft

● tool support:
● callgraph (next talk!)
● BANG (in progress)
● elfcall

COOL December 2024 34

Resolving symbols, recursively

1 extract symbols that need to be resolved from a binary

2 find libraries that have been defined as a dependency

3 for each library:
a search for any unresolved symbols from step 1 to see if the library

defines this symbol and record as “resolved”

b go to step 1

COOL December 2024 35

More information + acknowledgments

https://formats.kaitai.io/elf/
● https://refspecs.linuxfoundation.org/elf/
● https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
● ELF picture by Santiago Urueña Pascual released under CC-BY-

SA 3.0

https://formats.kaitai.io/elf/
https://refspecs.linuxfoundation.org/elf/
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

