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What is ELF?

Executable and Linkable Format
● origin in System V Unix
● default format for executables on Linux since mid-1990s

● but used as a container format by some (example: Android Dex)

● allows both static and dynamic linking
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Why analyse ELF files?

two main use cases for ELF analysis:
● provenance: where did this binary file come from?
● linking: what is the interaction with other components?

● interestingly, roughly the same information can be used for this!
● a full analysis walkthrough could take weeks. This will be the very 

quick condensed version.
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ELF file format structure

header, followed by:
● (optional) program headers
● segments/sections
● (optional) section headers

● just an empty header would be a valid ELF file (but not very 
useful)
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ELF in a picture (from Wikipedia)
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Program headers vs section headers

ELF provides two ways to access data:
● program headers point to segments
● section headers point to sections

● when executing the operating system (example: Linux) only uses 
the program headers

● for analysis the sections are much more useful
● fiddling with program headers/section headers is sometimes used 

as a form of obfuscation and sometimes won't match!
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Accessing section information

many tools available for accessing section information:
● readelf (GNU binutils)
● pyelftools
● Kaitai Struct

● in this talk readelf is used
● readelf does a lot of the heavy lifting
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readelf: useful switches

-W : wide output
● -h : display header
● -S : display sections
● -s : display symbols
● -a : display everything
● -p : display strings of a specific section
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Demo: poking around a few files

let's look at a few files using readelf
● /bin/ls
● /bin/vim

● and look at a few things:
● ELF header
● section information
● symbols
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Section names

ELF specification reserves several section names
● .interp
● .dynsym
● .shstrtab
● .dynamic
● etcetera

● developers are free to add other sections with non-reserved 
names
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Section types

Sections also have a type:
● NOTE : ELF note sections
● STRTAB : string sections
● VERSYM / VERNEED : symbol versioning information
● PROGBITS : program specific information (not defined by the 

specification)
● and so on
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Interesting NOTE sections

(recent) Fedora stores provenance
● .note.package contains JSON with package information:
● Example:

{"type":"rpm","name":"vim","version":"9.1.825-
1.fc39","architecture":"x86_64","osCpe":"cpe:/
o:fedoraproject:fedora:39"}

● this is a standard from systemd:
● https://systemd.io/ELF_PACKAGE_METADATA/

https://systemd.io/ELF_PACKAGE_METADATA/
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Interesting PROGBITS sections (1)

Example: Qt

$ readelf -WS /usr/lib64/libQt5Core.so.5.15.14 | grep qt

  [19] .qtmimedatabase   PROGBITS        [...]
● this section contains a compressed copy of the MIME database. 

Old versions of Qt use the (GPL licensed) MIME database from 
freedesktop.org
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Interesting PROGBITS sections (2)

Sony ESSTRA is a new project
● Enhancing Software Supply Chain Transparency
● GCC plugin that stores names of used files as YAML
● YAML stored in an ELF section
● new project, still under development
● https://github.com/sony/esstra/

https://github.com/sony/esstra/
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Interesting PROGBITS sections (3)

Go stores a ton of information in ELF sections
● line table, mapping to source code files at line number
● symbol table
● etc.
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Crazy ELF stuff

Android: uses ELF to wrap Dex bytecode
● AppImage version 2 puts its own magic bytes in the ELF header 

overwriting standard headers
● Go is funky:

● breaks ASCII requirements for symbols, by using UTF-8 characters

● ELF specifications should sometimes be treated as a “suggestion”
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Detecting provenance in more detail

information already available:
● file names (tend to be mostly unique, as most Linux systems are a 

single namespace)
● several sections (see before)

● but this is not granular enough. Instead use:
● symbols (functions, variables, etc.)
● strings



COOL December 2024 18

Why use symbols?

symbols are unique enough
● (unscientific) research:

● download recent Debian
● look at (defined) functions and variables in all ELF files

● result:
● vast majority of symbols are unique to a single package
● often unique to a single file
● Linux tends to be a single namespace because ELF linking is based on 

symbols
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Why use strings?

many strings survive compilation and stripping:
● debug strings
● output strings

● platform agnostic
● very specific to programs

● strings present the Linux kernel is very unlikely to end up in desktop 
applications, except for things like shared dependencies like 
compression
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Simple method for fingerprinting

1 extract symbols and strings from source code

2 extract symbols and strings from binaries

3 match!
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Extracting symbols and strings from source code

no fancy tools or parsers needed!
● for symbols:

● ctags
● pygmars

● for strings:
● xgettext
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Extracting symbols from ELF binaries (1)

process output from readelf
● parse ELF file:

● pyelftools
● Kaitai Struct

● readelf works well enough for small manual inspection, other 
methods for programmatically processing large amounts of files

● interesting from the symbol table: FUNC and OBJECT
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Extracting symbols from ELF binaries (2)

$ readelf -Ws /bin/bash | egrep -e 'FUNC|OBJECT' | grep -v UND | head -n 4

   234: 00000000000ebd10  1029 FUNC    GLOBAL DEFAULT   16 
rl_old_menu_complete

   235: 000000000005d110    25 FUNC    GLOBAL DEFAULT   16 
maybe_make_export_env

   236: 00000000000a5100    35 FUNC    GLOBAL DEFAULT   16 initialize_shell_builtins

   237: 00000000000d14a0    39 FUNC    GLOBAL DEFAULT   16 extglob_pattern_p
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Extracting symbols from ELF binaries (3)

If you are lucky:
● unstripped binaries can contain even more information

● debug symbols
● file names
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Extracting strings from ELF files

strings (GNU binutils) works well, but:
● for best success limit it to specific PROGBITS sections

● .rodata, .rodata.str1.1, .rodata.str1.4, .rodata.str1.8, etc.

● no guarantee for success, as strings could instead be stored as a trie!
● strings will not (by default) catch “wide” strings
● still: this is good enough!
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Fingerprinting caveats

Fingerprinting doesn't always work or catch all data:
● there has to be enough unique data to work with!
● statically linked ELF files, with no unique strings, are a challenge
● should be used as a starting point for further research, not a definitive 

answer
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Tool support for fingerprinting

Binary Analysis Next Generation (BANG):
● main analysis program extracts data from binaries
● helper scripts to:

● extract data from source code
● generate YARA scripts from data extracted from source code and binaries

● soon: integration with AboutCode's “purl2sym” service
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ELF dynamic linking analysis

● knowing how ELF files interact is important:
● GPL & LGPL compliance
● “derivative works”

● a tool like ldd can help, but:
● uses the dynamic linker configuration of the host system
● doesn't allow search

● so, let's look at a better method
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ELF dynamic linker

● kernel loads ELF file and looks for the interpreter (dynamic 
linker):

$ readelf -Wa /bin/ls | grep interpreter

      [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

● dynamic linker loads configuration (typically /etc/ld.so.conf and 
friends) to find library search path

● ELF file is queried for declared shared libraries that are needed, 
recursively

● symbols that are needed are searched in the
shared libraries and resolved, recursively
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ELF dependencies

$ readelf -Wa /bin/ls | grep NEEDED

 0x0000000000000001 (NEEDED)             Shared library: 
[libselinux.so.1]

 0x0000000000000001 (NEEDED)             Shared library: 
[libcap.so.2]

 0x0000000000000001 (NEEDED)             Shared library: 
[libc.so.6]
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Finding ELF symbols

$ readelf -Ws /bin/ls | egrep -e "FUNC|OBJECT" | grep UND | head -n 4

     1: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND 
__ctype_toupper_loc@GLIBC_2.3 (2)

     2: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND 
getenv@GLIBC_2.2.5 (3)

     3: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND cap_to_text

     4: 0000000000000000     0 OBJECT  GLOBAL DEFAULT  UND 
__progname@GLIBC_2.2.5 (3)
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ELF symbol versioning

● some ELF libraries provide versioning:
● attempt at API
● can be used for stricter fingerprinting and linking analysis

● not universally implemented, but some important libraries use it:
● glibc
● Qt
● ALSA
● PAM
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ELF linking graph

● result is ELF linking graph that could be used for:
● fine grained querying of symbols
● visual representation of link dependencies
● possibly detect cruft

● tool support:
● callgraph (next talk!)
● BANG (in progress)
● elfcall
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Resolving symbols, recursively

1 extract symbols that need to be resolved from a binary

2 find libraries that have been defined as a dependency

3 for each library:
a search for any unresolved symbols from step 1 to see if the library 

defines this symbol and record as “resolved”

b go to step 1
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More information + acknowledgments

https://formats.kaitai.io/elf/
● https://refspecs.linuxfoundation.org/elf/
● https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
● ELF picture by Santiago Urueña Pascual released under CC-BY-

SA 3.0

https://formats.kaitai.io/elf/
https://refspecs.linuxfoundation.org/elf/
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
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