
Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Computer language:
Source code, assembly, binary code

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Communicating with a computer

Humans communicate mostly
via language.

A computer “understands” only
binary code (01) representing

physical states of hardware
(“machine code”).

For humans to be able to communicate
with a computer (more easily),
computer languages are used.

What’s up?

Hello!
01001001 00100111
01101101 00100000
01101111 01101011

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Computer languages
● A Computer language is a set of operations and operators to

instruct a computer what to do.
● The text that is written by a programmer in a computer

language is called “source code”.
● Source code must be translated into machine code for a

computer to understand it.

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Assembly vs. high-level languages
● Different computer architectures (e.g. Intel, ARM, PowerPC or

RISC-V) require instructions in different machine code.
● Assembly languages are computer languages for a single

architecture can be directly translated into → machine code.
● Computer languages that can be used on any architecture are

called high-level languages must first be translated into an →
assembly language.

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

High-level computer languages
● High-level computer languages are classified into interpreter

and compiler languages on the one hand, and into general and
problem-oriented languages on the other hand.

Interpreter languages Compiler languages
General purpose PHP, Javascript, Python C/C++, C#, Rust
Problem oriented APL, R Fortran, Cobol

Example computer languages

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Interpreter languages
● An interpreter executes interpreter language source code line

by line when running a program.
● Binary code is not saved but immediately passed on to the

processor.
● Many interpreters are able to translate the code into an

intermediate language (“I-code”) that needs less space and
can be executed more quickly (e.g. minified Javascript).

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Interpreter languages
● Interpreters normally provide a text interface for interactive

programming:
For example Python

$ python
>>> print("Hello")
Hello
>>> a = 2
>>> b = 3
>>> print(a + b)
5

#!/usr/bin/env python
print("Hello")
a = 2
b = 3
print(a + b)

Interactive: Static:
Source code (hello.py):

Running the program: $ python hello.py
Hello
5

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

$ python

$ python

Interpreter languages
● Interpreters normally provide a text interface for interactive

programming:

>>> print("Hello")
Hello
>>> a = 2
>>> b = 3
>>> print(a + b)
5

#!/usr/bin/env python
print("Hello")
a = 2
b = 3
print(a + b)

Interactive: Static:
Source code (hello.py):

Running the program: hello.py
Hello
5

Python interpreter

For example Python

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Compiler languages
● A compiler translates (“compiles”) compiler language source

code into a binary executable that is stored before it can be
run on a computer.

● Usually, the hardware-independent source code is first
compiled into hardware-dependent code in assembly
language which is, in a subsequent step, converted into binary
machine code.

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Flow of operations from source to machine code

#include <stdio.h>

int main() {
puts("Hello World!");
return 0;

}

A programmer writes code in a
high-level language, i.e. C

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Flow of operations from source to machine code

#include <stdio.h>

int main() {
puts("Hello World!");
return 0;

}

A programmer writes code in a
high-level language, i.e. C

Compiler

.file "Hello-world.c"

.text
main:
 push %rbp
 mov %rsp,%rbp
 mov $0x402010,%edi
 callq 0x401030 <puts@plt>
 mov $0x0,%eax
 pop %rbp
 retq

The code is then compiled
into assembly language

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Flow of operations from source to machine code

#include <stdio.h>

int main() {
puts("Hello World!");
return 0;

}

A programmer writes code in a
high-level language, i.e. C

.file "Hello-world.c"

.text
main:
 push %rbp
 mov %rsp,%rbp
 mov $0x402010,%edi
 callq 0x401030 <puts@plt>
 mov $0x0,%eax
 pop %rbp
 retq

The code is then compiled
into assembly language

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Flow of operations from source to machine code

#include <stdio.h>

int main() {
puts("Hello World!");
return 0;

}

A programmer writes code in a
high-level language, i.e. C

Compiler

.file "Hello-world.c"

.text
main:
 push %rbp
 mov %rsp,%rbp
 mov $0x402010,%edi
 callq 0x401030 <puts@plt>
 mov $0x0,%eax
 pop %rbp
 retq

The code is then compiled
into assembly language

 Hexadecimal Binary

48 65 0100 1000 0110 0101
6c 6c 0110 1100 0110 1100
6f 20 0110 1111 0010 0000
57 6f 0101 0111 0110 1111
72 6c 0111 0010 0110 1100
64 21 0110 0100 0010 0001
00 00 0000 0000 0000 0000

(Small extract)

Assembler

The assembly language is then
assembled to binary machine code

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Flow of operations from source to machine code

#include <stdio.h>

int main() {
puts("Hello World!");
return 0;

}

A programmer writes code in a
high-level language, i.e. C

Compiler

.file "Hello-world.c"

.text
main:
 push %rbp
 mov %rsp,%rbp
 mov $0x402010,%edi
 callq 0x401030 <puts@plt>
 mov $0x0,%eax
 pop %rbp
 retq

The code is then compiled
into assembly language

 Hexadecimal Binary

48 65 0100 1000 0110 0101
6c 6c 0110 1100 0110 1100
6f 20 0110 1111 0010 0000
57 6f 0101 0111 0110 1111
72 6c 0111 0010 0110 1100
64 21 0110 0100 0010 0001
00 00 0000 0000 0000 0000

(Small extract)

Assembler

The assembly language is then
assembled to binary machine code

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Flow of operations from source to machine code

#include <stdio.h>

int main() {
puts("Hello World!");
return 0;

}

A programmer writes code in a
high-level language, i.e. C

Compiler

.file "Hello-world.c"

.text
main:
 push %rbp
 mov %rsp,%rbp
 mov $0x402010,%edi
 callq 0x401030 <puts@plt>
 mov $0x0,%eax
 pop %rbp
 retq

The code is then compiled
into assembly language

 Hexadecimal Binary

48 65 0100 1000 0110 0101
6c 6c 0110 1100 0110 1100
6f 20 0110 1111 0010 0000
57 6f 0101 0111 0110 1111
72 6c 0111 0010 0110 1100
64 21 0110 0100 0010 0001
00 00 0000 0000 0000 0000

(Small extract)

Assembler

The assembly language is then
assembled to binary machine code

and executed on a processor

Hello World!Software development in a tool chain

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Flow of operations from source to machine code

#include <stdio.h>

int main() {
puts("Hello World!");
return 0;

}

A programmer writes code in a
high-level language, i.e. C

Compiler

.file "Hello-world.c"

.text
main:
 push %rbp
 mov %rsp,%rbp
 mov $0x402010,%edi
 callq 0x401030 <puts@plt>
 mov $0x0,%eax
 pop %rbp
 retq

The code is then compiled
into assembly language

 Hexadecimal Binary

48 65 0100 1000 0110 0101
6c 6c 0110 1100 0110 1100
6f 20 0110 1111 0010 0000
57 6f 0101 0111 0110 1111
72 6c 0111 0010 0110 1100
64 21 0110 0100 0010 0001
00 00 0000 0000 0000 0000

(Small extract)

Assembler

The assembly language is then
assembled to binary machine code

and executed on a processor

Hello World!Software development in a tool chain

Hardware independent
The source code can be
compiled and run on any

machine on which the
 language (here: C) is

supported

Hardware dependent
The assembly language and its binary

representation are specific for a particular
machine (here: Intel x86). They are
completely useless on any other

machine such as ARM, RISC-V or PowerPC.

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Flow of operations from source to machine code

#include <stdio.h>

int main() {
puts("Hello World!");
return 0;

}

A programmer writes code in a
high-level language, i.e. C

Compiler

.file "Hello-world.c"

.text
main:
 push %rbp
 mov %rsp,%rbp
 mov $0x402010,%edi
 callq 0x401030 <puts@plt>
 mov $0x0,%eax
 pop %rbp
 retq

The code is then compiled
into assembly language

 Hexadecimal Binary

48 65 0100 1000 0110 0101
6c 6c 0110 1100 0110 1100
6f 20 0110 1111 0010 0000
57 6f 0101 0111 0110 1111
72 6c 0111 0010 0110 1100
64 21 0110 0100 0010 0001
00 00 0000 0000 0000 0000

(Small extract)

Assembler

The assembly language is then
assembled to binary machine code

and executed on a processor

Hello World!Software development in a tool chain

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Flow of operations from machine to source code

#include <stdio.h>

int a001() {
puts("Hello World!");
return 0;

}

The engineer tries his or her
 best to understand the code

compiler

.file "file.c"

.text
a001:
 push %rbp
 mov %rsp,%rbp
 mov $0x402010,%edi
 callq 0x401030 <puts@plt>
 mov $0x0,%eax
 pop %rbp
 retq

The source code is estimated
from assembly

(this is heuristic)

 Hexadecimal Binary

48 65 0100 1000 0110 0101
6c 6c 0110 1100 0110 1100
6f 20 0110 1111 0010 0000
57 6f 0101 0111 0110 1111
72 6c 0111 0010 0110 1100
64 21 0110 0100 0010 0001
00 00 0000 0000 0000 0000

(Small extract)

assembler

The original assembly is restored from
 binary code (this is deterministic)

Hello World!Reverse engineering

De- Dis-

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Flow of operations from machine to source code

#include <stdio.h>

int a001() {
puts("Hello World!");
return 0;

}

The engineer tries his or her
 best to understand the code

compiler

.file "file.c"

.text

a001:
 push %rbp
 mov %rsp,%rbp
 mov $0x402010,%edi
 callq 0x401030 <puts@plt>
 mov $0x0,%eax
 pop %rbp
 retq

The source code is estimated
from assembly

(this is heuristic)

 Hexadecimal Binary

48 65 0100 1000 0110 0101
6c 6c 0110 1100 0110 1100
6f 20 0110 1111 0010 0000
57 6f 0101 0111 0110 1111
72 6c 0111 0010 0110 1100
64 21 0110 0100 0010 0001
00 00 0000 0000 0000 0000

(Small extract)

assembler

The original assembly is restored from
 binary code (this is deterministic)

Hello World!

De- Dis-

Reverse engineering

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Flow of operations from machine to source code

#include <stdio.h>

int a001() {
puts("Hello World!");
return 0;

}

The engineer tries his or her
 best to understand the code

compiler

.file "file.c"

.text

a001:
 push %rbp
 mov %rsp,%rbp
 mov $0x402010,%edi
 callq 0x401030 <puts@plt>
 mov $0x0,%eax
 pop %rbp
 retq

The source code is estimated
from assembly

(this is heuristic)

 Hexadecimal Binary

48 65 0100 1000 0110 0101
6c 6c 0110 1100 0110 1100
6f 20 0110 1111 0010 0000
57 6f 0101 0111 0110 1111
72 6c 0111 0010 0110 1100
64 21 0110 0100 0010 0001
00 00 0000 0000 0000 0000

(Small extract)

assembler

The original assembly is restored from
 binary code (this is deterministic)

Hello World!Reverse engineering

De- Dis-

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Dependencies
● Most programs are not self-contained but require external

dependencies, i.e. libraries:

Source code
puts("Hello World!");

Executable
Is the function “puts” available in the

source code?

Compiler

= The function is compiled and a locally resolved symbol for the start of
 the function is created.

= locally unresolved symbol is created, and
memory address 0 is assigned to the unresolved symbol and it is
noted that the program is incomplete

Library
int puts (const char *str)

The linker combines the
library that contains the
unresolved function with the
program.

at link time = static linking
at runtime = dynamic linking

Linker

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Package managers
● Package managers keep track of (often) complex

dependency constructs (e.g. correct versions).
● Package managers also store meta-information on their

packages, including on licensing. However, this
information is usually maintained manually and can be
incomplete or outdated.

● Various systems / programming languages use different
package managers.

Open Source compliance: Technical must-knows for legal experts
Computer language

COOL January 29, 2025

Package managers: An excerpt
● Linux distributions:

– Debian, Ubuntu: dpkg, apt
– RedHat, Fedora: rpm, dnf

● C / C++:
– Conan

● Java:
– Maven

● Rust:
– Cargo

● Javascript:
– NPM

● Python:
– Pip

● PHP:
– Composer

● Partly NOT compatible with
each other

	Computer language: Source code, assembly, binary code
	Communicating with a computer
	Computer languages
	Assembly vs. high-level languages
	High-level computer languages
	Interpreter languages
	Interpreter languages (2)
	Interpreter languages (3)
	Compiler languages
	Flow of operations from source to machine code
	Flow of operations from source to machine code (2)
	Flow of operations from source to machine code (2) - Explanation
	Flow of operations from source to machine code (3)
	Flow of operations from source to machine code (3) - Explanation
	Flow of operations from source to machine code - final step
	Flow of operations from source to machine code (hardware dependency)
	Flow of operations from source to machine code (way there))
	Flow of operations from machine to source code (way back)
	Flow of operations from machine to source code
	Slide 20
	Slide 21
	Slide 22
	Slide 23

